Editorial

Volume 8 | Issue 1 | January-April  2022 | Page: 01 | Jayant  S. Sampat
DOI-10.13107/ijpo.2022.v08i01.126


Authors: Jayant S. Sampath FRCSEd (Tr & Orth) [1]

[1] Department of Orthopaedics, Rainbow Children’s Hospital, Bangalore, Karnataka, India.

Address of Correspondence
Dr. Jayanth S. Sampath,
Rainbow Children’s Hospital, Bangalore, Karnataka, India.
E-mail: editor.posi.ijpo@gmail.com


Dear Friends,
The first issue of IJPO in 2022 features a symposium on current concepts in musculoskeletal infections in children. Our associate editors, Dr Mohan V Belthur and Dr Ashish Ranade were instrumental in producing the symposium, from topic selection to coordinating with individual authors. A wide-ranging array of subjects feature in the symposium including tropical pyomyositis, diagnostic tools in infection, management guidelines for septic arthritis and the role of non-vascularised fibular grafting for post-infection bony defects.
The original article in this issue highlights improvements in the treatment outcomes of lateral condyle fracture of the humerus in children by a simple modification of existing techniques. In addition, there are 3 case reports which will be of interest to readers.
As life returns to normal following the pandemic, orthopaedic surgeons have less spare time to devote to academic pursuits. We appeal to POSI members to maintain the momentum that was created in 2020 by submitting their articles to IJPO on a regular basis. We will provide the necessary editorial assistance so that your ideas and research work can be shared with the global community of orthopaedic surgeons. This will be particularly useful to trainees and first-time authors.
The Editorial Board would like to thank the team of reviewers without whom this journal would not be possible.

Dr Jayanth S Sampath FRCSEd (Tr&Orth)
Editor

editor.ijpo@gmail.com


How to Cite this Article: Sampat JS | Editorial | International Journal of Paediatric Orthopaedics | May-August 2022; 8(1): 01.

(Article Text HTML)      (Download PDF)


Surgical and Medical Management of Deformity and Non-union with Implant Failure of Femur in OI Type III

Volume 8 | Issue 1 | January-April 2022 | Page: 35-42 | Sanjay Chhawra, Raman Jain, Unus Ahmed, Nimish Agarwal, Rajiv Chaubey, Gaganpreet Singh
DOI-10.13107/ijpo.2022.v08i01.132


Authors: Sanjay Chhawra D Ortho., DNB Ortho. FICS, Raman Jain MS Ortho., Unus Ahmed MS Ortho., Nimish Agarwal MS Ortho., Rajiv Chaubey MS Ortho., Gaganpreet Singh MS Ortho.

[1] Department of Orthopedics, Jaipur Golden Hospital, Rohini, Delhi, India.

Address of Correspondence
Dr. Sanjay Chhawra
Department of Orthopedics, Jaipur Golden Hospital, Rohini, Delhi, India.
E-mail: sanjaychhawra@yahoo.com


Abstract

Purpose: Osteogenesis imperfecta (OI) is characterized by increased bone fragility and susceptibility for fracture because of the mutation of genes. A few studies are there for treatment modalities of non-union femur fractures in children with OI. This study on adult OI patients aims to give insight into non-unions and their best treatment reporting the surgical modification by using a humeral nail for femoral fixation options to avert non-union. Best implant in the adolescent OI patients for the surgical reconstruction of the femur for correction of deformity healing non-union.
Methods: This is a retrospective, descriptive study of the OI type III fracture non-union and its treatment modality.
Conclusions: In Adolescent OI patients with the rare percentage of non-union with deformity with implant failure of the femur was fixed with Humerus nail having stable fixation deformity correction by both osteotomy rotational translational and conversion of non-union to union with a better result.
Keywords: Osteogenesis imperfecta (OI), TENS Tensile Elastic Nail System, Adolescent, Humeral nail, Femoral bowing deformity


References

1. Caouette C, Rauch F et al: Biomechanical analysis of fracture risk associated with tibia deformity in children with osteogenesis imperfecta: A finite element analysis. J Musculoskeletal Neuronal Interact, 2014; 14(2): 205–12.
2. Forlino A, Cabral WA, Marini JC. New perspectives on osteogenesis imperfecta. Nat RevEndocrinol.2011;7(9):540-557.10.1038/nrendo.2011.81.
3. MariniJC, Bachinger H Petal. Osteogenesis imperfecta. Nat Rev Dis Primers. 2017;3:17052.10.1038/nrdp.2017.52.
4. Sillence DO, Rimoin DL, Danks DM. Clinical variability in osteogenesis imperfecta-variable expressivity or genetic heterogeneity. Birth Defects Orig Artic Ser.1979;15(5B):113-129.
5. Van Dijk FS, Sillence DO. Osteogenesis imperfecta: clinical diagnosis, nomenclature, and severity assessment. Am J MedGenetA.2014;164A (6):1470-1481.
6. Semler O, Garbes L, Keupp K, et al. A mutation in the 5’-UTR of IFITM5 creates an in-frame start codon and causes autosomal-dominant osteogenesis imperfect type V with hyperplastic callus. Am J Hum Genet. 2012;91(2): 349-357.10.1016/j.ajhg.2012.06.01.
7. Ishikawa Y, Bachinger HP. A molecular ensemble in the ER for procollagen maturation. Bio chim Biophys Acta. 2013;1833(11):2479-2491.10.1016/j.bbamcr.2013.04.008
8. Marini JC, Forlino A, Cabral WA, et al. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrin sand proteoglycans. Hum Mutat.2007;28(3):209-221.10.1002/humu.20429
9. Morello R, Bertin TK, Chen Y, et al. CRTAP is required for prolyl 3- hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell. 2006;127(2): 291 304.10.1016/j.cell.2006.08.039.
10. Bonafe L, Cormier-Daire V, Hall C, et al. Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med GenetA.2015;167A (12):2869-2892.10.1002/ajmg.a.37365.
11. Thomas IH, DiMeglio LA. Advances in the Classification and Treatment of Osteogenesis Imperfecta. Curr Osteoporos Rep. 2016;14(1):1-9.10.1007/s11914-016-0299-y.
12. Thompson EM. Non-Invasive Prenatal Diagnosis of Osteogenesis Imperfecta. Am J MedGenet.1993;45:201-206.10.1002/ajmg.1320450210.
13. Buisson O, Senat MV, Laurenceau N, Ville Y. Update on prenatal diagnosis of osteogenesis type II: An index case report diagnosed by ultrasonography in the first trimester. J Gynecol Obstet Bio l Reprod.2002;31:672-676.
14. Huang RP et al. Functional Significance of Bone Density Measurements in Children with Osteogenesis Imperfecta. The Journal of Bone and Joint Surgery (American). 2006:88:1324.10.2106/JBJS.E.00333.
15. MaromR, LeeYC, Grafe I & Lee B. Pharmacological and biological therapeutic strategies for osteogenesis imperfecta. American Journal of Medical Genetics Part C: Seminars in MedicalGenetics2016172367–383.10.1002/ajmg.c.31532.
16. TauerJT, Robinson ME & Rauch F. Osteogenesis imperfecta: new perspectives from clinical and translational research. JBMR Plus 20193 e10174 10.1002/jbm4.10174.
17. Bains JS, Carter EM, Cuthbertson D, et al. A multicenter observational cohort study to evaluate the effects of bisphosphonate exposure on bone mineral density and other health outcomes in osteogenesis imperfecta. JBMR Plus 20193 e10118.10.1002/jbm4.10118.
18. Kerry Dwan, Donald Basel Bisphosphonate Therapy for Osteogenesis Imperfecta. Cochrane Database Syst Rev. 2016 Oct;2016(10):CD005088doi:10.1002/14651858.CD005088.pub4.
19. Li LJ, Zheng WB, Li M. Effects of zoledronic acid on the vertebral shape of children and adolescents with osteogenesis imperfecta. Bone 2019127164–171. 10.1016/j.bone.2019.06.011.
20. Orwoll ES, Shapiro J, Veith S, Mullins MA, et al. Evaluation of teriparatide treatment in adults with osteogenesis imperfecta. Journal of Clinical Investigation 2014124491–498.10.1172/JCI71101.
21. Heike Hoyer-Kuhn, Christian Netzer, Oliver Semler Two years’ experience with denosumab for children with Osteogenesis imperfecta type VI. Orphanet J Rare Dis 2014 Sep 26;9:145.
22. Sinder BP, Novak S, Kalajzic I. Engraftment of skeletal progenitor cells by bone directed transplantation improves osteogenesis imperfecta murine bone phenotype. Stem Cells 2020 38530–541.10.1002/stem.3133.
23. Glorieux FH, Devogelaer JP, Winkle PJ. BPS804 anti-sclerostin antibody in adults with moderate osteogenesis imperfecta: a randomized phase 2a trial results. Journal of Bone and Mineral Research 2017 32 1496–1504. 10.1002/jbmr.3143.
24. Zieba J, Munivez E, Lee B. Fracture healing in collagen-related preclinical models of osteogenesis imperfecta. Journal of Bone and Mineral Research 2020 35 1132–1148.10.1002/jbmr.3979.
25. Song HR, Soma Raju VV, Kumar S, et al. Deformity correction by external fixation and/or intramedullary nailing in hypo phosphatic rickets. ActaOrthop2006;77:307–14.10.1080/17453670610046073.
26. Bailey RW, Dubow HI. Studies of longitudinal bone growth resulting in an extensible nail. Surg Forum. 1963; 14:455-8.PMID:1406569310.1302/0301-620X.82B1.9601.
27. Sofield HA, Millar EA. Fragmentation, realignment, and intramedullary rod fixation of deformity of the long bones in children: a ten-year appraisal. J Bone Joint Surg Am.1959;41(8):1371-91
28. Wilkinson JM, Scott BW, Bell MJ. Surgical stabilisation of the lower limb in osteogenesis imperfecta using the Sheffield Telescopic Intramedullary Rod System. J Bone Joint Surg Br.1998;80(6):999-1004.10.1302/0301-620x.80b6.8667.
29. Fassier F. Fassier-Duval telescopic system: how i do it? J Pediatr Orthop. 2017;37Suppl 2:S48-S51.10.1097/BPO.0000000000001024.
30. ChoTJ, Lee KS, Lee DY. Interlocking telescopic rod for patients with osteogenesis imperfecta. J Bone Joint Surg Am. 2007;89(5):1028-35. 10.2106/JBJS.F.00814.
31. Sarikaya I, Seker A, Guler B. Using a corkscrew-tipped telescopic nail in the treatment of osteogenesis imperfecta: a biomechanical study and preliminary results of 17 consecutive cases. J Pediatr Orthop B.2019;28(2):173-8.10.1097/BPB.0000000000000537.
32. Puvanesarajah V, Shapiro JR, Sponseller PD. Sandwich allografts for long-bone non unions in patients with osteogenesis imperfecta: a retrospective study. J Bone Joint Surg Am.2015;97(4):318-25.10.2106/JBJS.N.00584.
33. Li J, Rai S, Hong P. Rotational and translational osteotomy for treatment of severe deformity in hypophosphate mi crickets: A case report. Medicine 2020;99:3(e18425).10.1097/MD.0000000000018425.
34. Saldanha KA, Saleh M, Bell MJ, Fernandes JA. Limb lengthening and correction of deformity in the lower limbs of children with osteogenesis imperfecta. J Bone Joint Surg Br. 2004;86(2):259-65.10.1302/0301-620x.86b2.14393
35. To M, Gupta V, Chow W. Surgical management of long bone pseud arthrosis with severe limblength discrepancy in osteogenesis imperfecta. J Pediatr Orthop B. 2013;22(1):63- 9.10.1097/BPB.0b013e32834de542.
36. L H Gerber 1, H Binder, J Marini Effects of withdrawal of bracing in matched pairs of children with osteogenesis imperfect Arch Phys Med Rehabil 1998 Jan;79(1):46-51.
37. Metsemakers WJ, Roel, Nijs S. Risk factors for nonunion after intramedullary nailing of femoral shaft fractures: remaining controversies. Injury. Int J Care Inj. 2015;46:1601–7.10.1097/MD.0000000000016559.
38. Papakostidis C, Grestas A, Giannoudis PV. Femoral-shaft fractures and non unions treated with intramedullary nails: the role of dynamisation. Injury. Int J Care Inj. 2011;42:1353–61.DOI10.1016/j.injury.2011.06.024.
39. Paphon Sa-ngasoongsong, Tanyawat Saisongcroh, and Pornchai Mulpruek Using humeral nail for surgical reconstruction of femur in adolescents with osteogenesis imperfect World J Orthop. 2017Sep 18;8(9):735–740.doi:10.5312/wjo. v8. i9.735.
40. Wouter Alexander Goudriaan, Gerrit Jan Harsevoort, Guus Johannes Maria Janus European Journal of Trauma and Emergency Surgery (2020) 46:165–171 Incidence and treatment of femur fractures in adults with osteogenesis imperfecta: an analysis of an expert clinic of 216 patients.
41. Agarwal V, Joseph B. Non-union in osteogenesis imperfecta. J Pediatr Orthop. 2005;14(6):451–5.10.1097/01202412-200511000-00013.
42. Gamble JG, Rinsky LA, Bleck EE. Non-union of fractures in children who have osteogenesis imperfecta. J Bone Jt Surg Am. 1988;80(3):439–43.


How to Cite this Article:  Chhawra S, Jain R, Ahmed U, Agarwal N, Chaubey R, Singh G | Surgical and Medical Management of Deformity and Non-union with Implant failure of Femur in OI Type III | International Journal of Paediatric Orthopaedics | January-April 2022; 8(1): 35-42.

(Abstract Text HTML)      (Full Text PDF)


A Case of Pyomyositis in a Healthy 11-Year Old Boy with Need of Surgical Drainage

Volume 8 | Issue 1 | January-April 2022 | Page: 47-50 | Alina Frolova, Joana Freitas, Rui Martins, Jorge Coutinho

DOI-10.13107/ijpo.2022.v08i01.134


Authors: Alina Frolova MD [1], Joana Freitas MD [1], Rui Martins MD [1], Jorge Coutinho MD [1]

[1] Department of Pediatric Orthopedics, The University Hospital Centre São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto Portugal.

Address of Correspondence

Dr. Alina Frolova,
Department of Pediatric Orthopedics, The University Hospital Centre São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto Portugal.
E-mail: alina.frolova.238@gmail.com


Abstract

Pyomyositis is an uncommon clinical entity affecting predominantly pediatric population. It presents with diffuse muscle involvement, mostly in the lower limb, with occasional abscess formation and need of drainage, coupled to an appropriate antibiotic therapy.
In this article we present a case of a previously healthy 11-year old boy with an acute onset of hip pain and fever, as well as elevation in blood leukocyte count and C-reactive protein. Magnetic resonance imaging showed a gadolinium-enhanced oedema of internal obturator, external obturator, adductors and quadratus femoris, with an intra-muscular abscess of external obturator. After two attempted percutaneous drainages the patient progressed to sepsis, with the need of open surgical drainage through transgluteal approach. Concomitantly, a deep venous thrombosis was also diagnosed.
After the appropriate drainage and a prolonged antibiotic regimen, patient’s condition improved, with full recovery and no sequelae.
Keywords: Pyomyositis, External obturator, Muscle abscess, Transgluteal approach


References

1. Maravelas R, Melgar TA, Vos D, Lima N, Sadarangani S. Pyomyositis in the United States 2002-2014. J Infect. 2020 May;80(5):497-503
2. Bickels J, Ben-Sira L, Kessler A, Wientroub S. Primary pyomyositis. J Bone Joint Surg Am. 2002 Dec;84(12):2277-86
3. Moriarty P, Leung C, Walsh M, Nourse C. Increasing pyomyositis presentations among children in Queensland, Australia. Pediatr Infect Dis J. 2015 Jan;34(1):1-4
4. Moriuchi Y, Fuchigami T, Sugiyama C, Takahashi S, Ohashi Y, Yonezawa R, Mizukoshi W, Morioka I. Obturator pyomyositis and labium majus cellulitis: A case report and literature review. SAGE Open Med Case Rep. 2022 Mar 25
5. Kiran M, Mohamed S, Newton A, George H, Garg N, Bruce C. Pelvic pyomyositis in children: changing trends in occurrence and management. Int Orthop. 2018 May;42(5):1143-1147
6. García-Mata S, Hidalgo-Ovejero A, Esparza-Estaun J. Primary obturator-muscle pyomyositis in immunocompetent children. J Child Orthop. 2012 Jul;6(3):205-15
7. Ovadia D, Ezra E, Ben-Sira L, Kessler A, Bickels J, Keret D, Yaniv M, Wientroub S, Lokiec F. Primary pyomyositis in children: a retrospective analysis of 11 cases. J Pediatr Orthop B. 2007 Mar;16(2):153-9
8. Comegna L, Guidone PI, Prezioso G, Franchini S, Petrosino MI, Di Filippo P, Chiarelli F, Mohn A, Rossi N. Pyomyositis is not only a tropical pathology: a case series. J Med Case Rep. 2016 Dec 21;10(1):372
9. Unnikrishnan PN, Perry DC, George H, Bassi R, Bruce CE. Tropical primary pyomyositis in children of the UK: an emerging medical challenge. Int Orthop. 2010 Feb;34(1):109-13
10. Sánchez-Rodríguez HM, Morales-Ávalos R, Rivera-Zarazúa S, Ramírez-Elizondo MT, Hernández-Rodríguez PA, Vílchez-Cavazos F, Peña-Martínez VM. Piomiositis tropical del músculo ilíaco, obturador interno, piriforme y psoas mayor en un paciente inmunocompetente con claudicación [Tropical pyomyositis of the iliacus, obturator internus, piriformis and psoas major muscles in an immunocompetent patient with claudication]. Acta Ortop Mex. 2021 Jan-Feb;35(1):80-84. Spanish.
11. Tawfik D, Hobson WL. Group A Streptococcal Pyomyositis in a Previously Healthy Six-year-old Girl. Cureus. 2018 Feb 8;10(2):e2168
12. Menge TJ, Cole HA, Mignemi ME, Corn WC, Martus JE, Lovejoy SA, Stutz CM, Mencio GA, Schoenecker JG. Medial approach for drainage of the obturator musculature in children. J Pediatr Orthop. 2014 Apr-May;34(3):307-15
13. White S, Stopka S, Nimityongskul P, Jorgensen D. Transgluteal Approach for Drainage of Obturator Internus Abscess in Pediatric Patients. J Pediatr Orthop. 2017 Jan;37(1):e62-e66


How to Cite this Article:  Frolova A, Freitas J, Martins R, Coutinho J | A Case of Pyomyositis in a Healthy 11-Year Old Boy with Need of Surgical Drainage | International Journal of Paediatric Orthopaedics | January-April 2022; 8(1): 47-50.

(Article Text HTML)      (Full Text PDF)


One-Stage Emergency Surgical Release of Amniotic Constriction Band in Streeter’s Dysplasia with Clubfoot- A Case Report

Volume 8 | Issue 1 | January-April 2022 | Page: 43-46 | Harsharan Singh Oberoi, Baldish Singh Oberoi

DOI-10.13107/ijpo.2022.v08i01.133


Authors: Harsharan Singh Oberoi MS, DNB Ortho [1], Baldish Singh Oberoi MS Ortho, MPH [1]

[1] Department of Orthopaedics, Oberoi Hospital, Jalandhar City, Punjab, India.

Address of Correspondence

Dr. Baldish Singh Oberoi
Orthopaedic Surgeon, Oberoi Hospital, Jalandhar City, Punjab, India.
Email: baldishoberoi@gmail.com


Abstract

Streeter’s dysplasia is a rare condition that occurs in 1 in 1200 to 1 in 15000 live births. Timely intervention is the key in saving the limb in vascular compromised cases. A 7 days old neonate presented with Streeter’s Dysplasia with a grossly swollen, deformed and cyanosed foot. The deformity was a clubfoot deformity. There was a circumferential amniotic constriction band in the lower third left leg, causing a vascular compromise leading to bluish discoloration and gross swelling of the foot and toes. There was another semicircular band in the mid-foot region. One stage urgent circumferential band excision and multiple Z plasties for skin cover were done. The foot and the toes turned pink immediately. The swollen foot was treated by debulking of the foot and the clubfoot deformity by the Ponseti method.
Keywords: Streeter’s dysplasia, Vascular compromise, Constriction ring, One stage release, Clubfoot, Debulking


References

1. Quintero RA, Morales WJ, Phillips J, Kalter CS, Angel JL. In utero lysis of amniotic bands. Ultrasound Obstet Gynecol. 1997 Nov;10(5):316-20.
2. Patterson TJ. Congenital ring-constrictions. Br J Plast Surg. 1961 Apr;14:1-31.
3. Tada K, Yonenobu K, Swanson AB. Congenital constriction band syndrome. J Pediatr Orthop. 1984 Nov;4(6):726-30.
4. Baker CJ, Rudolph AJ. Congenital ring constrictions and intrauterine amputations. Am J Dis Child. 1971 May;121(5):393-400.
5. Naqvi ZG, Rao I, Anwer W, Yaseen T. Two-stage release in Streeter’s dysplasia. BMJ Case Rep. 2015 Apr 21;2015:bcr2014207568.
6. Chiu DTW, Patel A, Sakamoto S, Chu A. The Impact of Microsurgery on Congenital Hand Anomalies Associated with Amniotic Band Syndrome. Plast Reconstr Surg Glob Open. 2018 Apr 4;6(4):e1657.
7. Streeter GL. Focal deficiencies in fetal tissues and their relation to intrauterine amputations. Contrib. Embryol. 1930;22:1-44.
8. Torpin R. Amniochorionic mesoblastic fibrous strings and amnionic bands: associated constricting fetal malformations or fetal death. Am J Obstet Gynecol. 1965 Jan 1;91:65-75.
9. Hata T, Tanaka H, Noguchi J. 3D/4D sonographic evaluation of amniotic band syndrome in early pregnancy: a supplement to 2D ultrasound. J Obstet Gynaecol Res. 2011 Jun;37(6):656-60.
10. Pedersen TK, Thomsen SG. Spontaneous resolution of amniotic bands. Ultrasound Obstet Gynecol. 2001 Dec;18(6):673-4.
11. Alabdrabalnabi FI, Elsaid AS, Alsinan FM, Almushrif HA, Nasr MA, Elashaal E, Aljehani RK. Early release of constricting amniotic band of the lower limb followed by reconstruction using multiple Z-plasty. J Pediatr Surg. Case Rep. 2021 Dec 1;75:102054.
12. Dufournier B, Guero S, de Tienda M, Dana C, Garcelon N, Glorion C, Salon A, Pannier S. One-stage circumferential limb ring constriction release and direct circular skin closure in amniotic band syndrome: a 14-case series. Orthop Traumatol Surg Res. 2020 Nov;106(7):1353-9.
13. Carpiaux AM, Hosseinzadeh P, Muchow RD, Iwinski HJ, Walker JL, Milbrandt TA. The Effectiveness of the Ponseti Method for Treating Clubfoot Associated With Amniotic Band Syndrome. J Pediatr Orthop. 2016 Apr-May;36(3):284-8.
14. Basheer SM, Karashi AR, Abdulbasith M. Single stage release of bilateral amniotic band syndrome. Bahrain Med.Bull. 2019 Mar 1;41(1):38-41.
15. Waiswa G, Nassaazi J, Kajja I. Single stage release surgery for congenital constriction band in a clubfoot patient managed at a Teaching Hospital In Uganda: A case report. East Afr. Orthop J. 2020 Nov 12;14(2):99-101.


How to Cite this Article:  Oberoi HS, Oberoi BS| One-Stage Emergency Surgical Release of Amniotic Constriction Band in Streeter’s Dysplasia with Clubfoot- A Case Report | International Journal of Paediatric Orthopaedics | January-April 2022; 8(1): 43-46.

(Article Text HTML)      (Full Text PDF)


Fixation of Displaced Paediatric Humeral Lateral Condyle Fractures with 3 K-Wires

Volume 8 | Issue 1 | January-April 2022 | Page: 31-34 | Deepak Jain, Tushar Agrawal, Saijyot Raut, Parimal Malviya

DOI-10.13107/ijpo.2022.v08i01.131


Authors: Deepak Jain MS Ortho [1], Tushar Agrawal MS Ortho [2, 3], Saijyot Raut MS Ortho [2],
Parimal Malviya MS Ortho. [2]

[1] Department of Orthopaedics & Spine Surgery Ganga Hospital, Coimbatore, Tamil Nadu, India.
[2] Department of Orthopaedics, MGM Hospital, Navi Mumbai, Maharashtra, India.
[3] Aastha Hospital, Mumbai, Maharashtra, India.

Address of Correspondence
Dr. Deepak Jain,
Paediatric Orthopaedic Fellow, Department of Orthopaedics & Spine Surgery, Ganga Hospital, Coimbatore, Tamil Nadu, India.
E-mail: deepaksjain1993@gmail.com


Abstract

Background- Management of paediatric humeral lateral condyle fractures by 2 Kirschner wire or screw fixation in parallel or divergent manner remains the treatment of choice and has long remained unchallenged. In this study, we are recommending using a third K wire for fracture fixation technique for the age group less than 10 years which provides a more stable fixation enhances stability and ensures better outcomes without any significant disadvantages.
Materials & Methods- We Present a Cohort of 20 pediatric lateral condyle fractures of Song et al stage 3 and above. Of the 20 patients treated, 12 were male and 8 females. All fractures were fixed using 3 lateral Kirschner wires of size 1.2 or 1.5mm. Out of the 20 fractures, 12 were opened and 8 were fixed percutaneously.
Results- All Patients showed union at 6 weeks. K-wires were removed at 6 weeks. Good radiological and clinical outcomes were noted on the periodical check-up. Hardacre score was used to calculate clinical outcome. None of the patients had any loss of reduction, non-union, or implant-related failure except for pin tract infections in a few patients.
Conclusion- We recommend adding a third wire to the construct for three k wires fixation for lateral condyle humerus fractures in all patients less than 10 years which is useful tool, cost-effective, enhances stability and ensures good outcomes without any significant disadvantages. We found all benefits of the cannulated screws by inserting the third wire and the fracture was found to be biomechanically more stable, none showed loss of reduction, had early union, early mobilization, minimal chances of nonunion, full ROM, no infection with the added advantage of no re-surgery for implant removal
Keywords- Pediatric fractures, Elbow fractures, Lateral condyle fractures, K-wires


References

1. Beaty JH, Kasser JR. The elbow: Physeal fractures, apophyseal injuries of the distal humerus, osteonecrosis of the trochlea, and T¬-condylar fractures. In: Beaty JH, Kasser JR, eds. Rockwood and Wilkins’ Fractures in Children. Philadelphia, PA: Lippincott Williams & Wilkins; 2006:591–660

2. Song KS, Kang CH, Min BW, et al. Closed reduction and internal fixation of displaced unstable lateral condylar fractures of the humerus in children. J Bone Joint Surg Am. 2008;90: 2673–2681.

3. Mintzer CM, Waters PM, Brown DJ, Kasser JR. Percutaneous pinning in the treatment of displaced lateral condyle fractures. J Pediatr Orthop 1994; 14:462–465

4. Song KS, Shin YW, Oh CW, et al. Closed reduction and internal fixation of completely displaced and rotated lateral condyle.

5. Nishikant K, Anil M, Chandrashekhar Y, Rishi R, Sanjay M, Nilesh B. Delayed presentation of fracture of lateral condyle of humerus in pediatric age group treated by ORIF and ulnar peg grafting: a case series. J Orthop Allied Sci 2015; 3:12–16.

6. Foster DE, Sullivan JA, Gross RH. Lateral humeral condylar fractures in children. J Pediatr Orthop 1985; 5:16–22.

7. Thomas DP, Howard AW, Cole WG, Hedden DM. Three weeks of Kirschner wire fixation for displaced lateral condylar fractures of the humerus in children. J Pediatr Orthop 2001; 21:565–569.

8. Song KS, Chul K, Byung M, Ki B, Chul C, Ju L. Closed reduction and internal fixation of displaced unstable lateral condylar fractures of the humerus in children. J Bone Joint Surg Am 2008; 90:2673–2681.

9. Audrey V, Tercier S, Vauclair F, Bregou¬ Bourgeois A, Lutz N, Zambelli PY. Lateral condyle fracture of the humerus in children treated with bioabsorbable materials. Sci World J. 2013;2013:869418. doi:10.1155/2013/869418.

10. Mintzer CM, Waters PM, Brown DJ, Kasser JR. Percutaneous pinning in the treatment of displaced lateral condyle fractures. J Pediatr Orthop. 1994;14(4):462–465. doi:10.1097/01241398¬ 199407000¬00008.

11. Song KS, Kang CH, Min BW, Bae KC, Cho CH, Lee JH. Closed reduction and internal fixation of displaced unstable lateral condylar fractures of the humerus in children. J Bone Joint Surg Am. 2008;90 (12):2673–2681. doi:10.2106/JBJS.G.01227.

12. Marcheix PS, Vacquerie V, Longis B, Peyrou P, Fourcade L, Moulies D. Distal humerus lateral condyle fracture in children: when is the conservative treatment a valid option? Orthop Traumatol.

13. Weiss JM, Graves S, Yang S, Mendlesohn E, Kay RM, Skaggs DL (2009): A new classification system predictive of complications in surgically treated pediatric humeral lateral condyle fractures. J Pediatr Orthop., 29:602– 605.

14. Leonidou A, Chettiar K, Graham S, Akhbari P, Antonis K, Tsiridis E, Leonidou O (2014): Open reduction internal fixation of lateral humeral condyle fractures in children. A series of 105 fractures from a single institution. Strategies Trauma Limb Reconstr., 9:73–78.

15. Hardacre JA, Nahigian SH, Froimson AI, Brown JE (1971) Fractures of the lateral condyle of the humerus in children. J Bone Joint Surg Am 53(6):1083–1095.

16. R. Lal Sahu Percutaneous K wire fixation in pediatric lateral condylar fractures of humerus: A prospective study. Rev Esp Cir Ortop Traumatol. 2017

17. R. Ganeshalingam, A. Donnan, O. Evans, M. Hoq, M. Camp, L. Donnan Lateral condylar fractures of the humerus in children DOES THE TYPE OF FIXATION MATTER? Bone Joint J 2018;100¬B:387–95.

18. Gilbert SR, MacLennan PA, Schlitz RS, Estes AR. Screw versus pin fixation with open reduction of pediatric lateral condyle fractures. J Pediatr Orthop B 2016;25:148– 152.

19. Li WC, Xu RJ. Comparison of Kirschner wires and AO cannulated screw internal fixation for displaced lateral humeral condyle fracture in children. Int Orthop 2012;36:1261–1266.

20. Sharma JC, Arora A, Mathur NC, et al. Lateral condyle fractures of the humerus in children: fixation with partially threaded 4.0¬mm AO cancellous screws. J Trauma. 1995;39:1129–1133.

21. Baharuddin M, Sharaf I. Screw osteosynthesis in the treatment of fracture. Med J Malaysia. 2001;56(suppl D):45–47.

22. Conner AN, Smith MGH: Displaced Fractures of the lateral Humeral Condyle in Children. J Bone Joint Surg 52B:460,1970.

23. Saraf SK, Khare GN (2011) Late presentation of fractures of the lateral condyle of the humerus in children. Indian J Orthop 45 (1):39–44.

24. Danielle S. Wendling¬Keim1 Sandra Teschemacher1 Hans¬ Georg Dietz1 Markus Lehner Lateral Condyle Fracture of the Humerus in Children: Kirschner Wire or Screw Fixation? European Journal of Pediatric Surgery 2020.

25. Ya¬ Fei Qin, MD, Zhi¬ Jun Li, MD, Cheng¬ Kai Li, MD, Shu ¬Cai Bai, MD, Hui Li, MD Unburied versus buried wires for fixation of pediatric lateral condyle distal humeral fractures A meta-analysis Qin et al. Medicine (2017) 96:34.

26. Avijeet Prasad, Puneet Mishra, Aditya N Aggarwal, Manish Chadha, Rohit Pandey, Rahul Anshuman Exposed versus Buried Kirschner Wires Used in Displaced Pediatric Fractures of Lateral Condyle of Humerus. Indian Journal of Orthopaedics | Volume 52| Issue 5 | September¬-October 2018


How to Cite this Article:  Jain D, Agrawal T, Raut SJ, Malviya P | Fixation of Displaced Paediatric Humeral Lateral Condyle Fractures with 3 K-Wires | International Journal of Paediatric Orthopaedics | January-April 2022; 8(1): 31-34.

(Article Text HTML)      (Full Text PDF)


Role of Non Vascularized Fibula Graft in the Management of Post Osteomyelitic Bone Defects in Children

Volume 8 | Issue 1 | January-April 2022 | Page: 24-30 | Anil Agarwal, Ankur, Ankit Jain

DOI-10.13107/ijpo.2022.v08i01.130


Authors: Anil Agarwal MS Ortho. [1], Ankur MS Ortho. [1], Ankit Jain D Ortho. [1]

[1] Department of Paediatric Orthopaedics, Chacha Nehru Bal Chikitsalaya, Geeta Colony, Delhi, India.

Address of Correspondence
Dr. Anil Agarwal,
Department of Paediatric Orthopaedics, Chacha Nehru Bal Chikitsalaya, Geeta Colony, Delhi, India.
E-mail: anilrachna@gmail.com


Abstract

Osteomyelitis continues to be widely prevalent in low socioeconomic countries. The challenges associated with the disease include weakened pathological bone, cavities, pathological fractures, non-union and gaps. This article discusses the uses of non-vascularized fibular graft for the management of the sequelae of osteomyelitis. A review of literature reveals this technique to be quite successful with fewer complications. Being technically less demanding and easy, this procedure remains an important tool in the management of bone defects due to osteomyelitis in children.
Keywords: Osteoarticular infection, Reconstruction, Bone graft


References

1. Ono CM, Albertson KS, Reinker KA, Lipp EB. Acquired radial club hand deformity due to osteomyelitis. J Pediatr Orthop. 1965;15:161-8.
2. Malki A, Wong-Chung J, Hariharan V. Centralization of ulna for infected nonunion of radius with extensive bone loss: a modified Hey-Groves procedure. Injury. 2000;31:345-9.
3. Rasool MN. Pyogenic osteomyelitis of the forearm bones in children. SA Orthopedic Journal. 2011;10:18-24.
4. Zhang X, Duan L, Li Z, Chen X. Callus distraction for the treatment of acquired radial club hand deformity after osteomyelitis. J Bone Joint Surg Br. 2007;89:1515-8.
5. Netrawichien P. Radial clubhand-like deformity resulting from osteomyelitis of the distal radius. J Pediatr Orthop. 1995;15:157-60.
6. Wirbel R, Hermans K. Surgical treatment of chronic osteomyelitis in children admitted from developing countries. Afr J Paediatr Surg. 2014;11:297-303.
7. Lloyd-Roberts GC. Treatment of defects in children by establishing cross union with the radius. J Bone Joint Surg Br. 1973;55:327-30.
8. Allsopp BJ, Hunter-Smith DJ, Rozen WM. Vascularized versus nonvascularized bone grafts: what is the evidence? Clin Orthop Relat Res. 2016;474:1319-27.
9. Ma XY, Liu B, Yu HL, Zhang X, Xiang LB, Zhou DP. Induced membrane technique for the treatment of infected forearm nonunion: a retrospective study. J Hand Surg Am. 2021:S0363-5023(21)00402-0.
10. Patwardhan S, Shyam AK, Mody RA, Sancheti PK, Mehta R, Agrawat H. Reconstruction of bone defects after osteomyelitis with nonvascularized fibular graft: a retrospective study in twenty-six children. J Bone Joint Surg Am. 2013;95:e56, S1.
11. Malik S, Joshi S, Tank JS. Cystic bone tuberculosis in children- a case series. Indian J Tuberc. 2009;56:220-4.
12. Rasool MN, Govender S, Naidoo KS. Cystic tuberculosis of bone in children. J Bone Joint Surg Br. 1994;76:113-7.
13. Agarwal A, Kant KS, Kumar A, Shaharyar A, Verma I, Suri T. Lytic lesions of distal radius in children: a rare tubercular presentation. Hand Surg. 2014;19:369-74.
14. Agarwal A, Gupta N, Mishra M, Agrawal N, Kumar D. Primary epiphyseal and metaepiphyseal tubercular osteomyelitis in children A series of 8 case. Acta Orthop Belg. 2016;82:797-805.
15. Collert S, Isacson J. Chronic sclerosing osteomyelitis (Garré). Clin Orthop Relat Res. 1982;164:136-40.
16. Segev E, Hayek S, Lokiec F, Ezra E, Issakov J, Wientroub S. Primary chronic sclerosing (Garré’s) osteomyelitis in children. J Pediatr Orthop B. 2001;10:360-4.
17. Malkawi H, Shannak A, Sunna’ P. Active treatment of segmental defects of long bones with established infection. A prospective study. Clin Orthop Relat Res. 1984;184:241-8.
18. Agarwal A, Yogendra Raj R, Shanker M. Clinicoradiological outcomes following single-stage treatment using external fixator, copious bone grafting and high dose antibiotics for infected postosteomyelitic nonunion of femoral shaft. J Pediatr Orthop B. 2021;30:85-92.
19. Agarwal A, Raj RY, Gupta S, Shanker M. Osteosynthesis of postosteomyelitic forearm defects in children using a modified bone grafting technique: the fibular intramedullary bridging bone and additional grafting (FIBBAG). J Hand Surg Asian Pac Vol. 2020;25:13-9.
20. Pawar DP, Ninawe DT, Sheth DBA. A novel technique of ulna strut grafting for post-septic radial clubhand deformity: Case series of 4 patients with review of literature. J Clin Orthop Trauma. 2020;11(Suppl 5):S883-S888.
21. Al-Zahrani S, Harding MG, Kremli M, Khan FA, Ikram A, Takroni T. Free fibular graft still has a place in the treatment of bone defects. Injury. 1993;24:551-4.
22. Enneking WF, Edy JL, Burchardt H. Autogenous cortical bone grafts in the reconstruction of segmental skeletal defects. J Bone Joint Surg Am. 1980;62:1039-58.
23. Yajima H, Kobata Y, Shigematsu K, Kawamura K, Kawate K, Tamai S, et al. Vascularized fibular grafting in the treatment of methicillin-resistant Staphylococcus aureus osteomyelitis and infected nonunion. J Reconstr Microsurg. 2004;20:13-20.
24. Khan SN, Cammisa FP Jr, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bone grafting. J Am Acad Orthop Surg. 2005;13:77-86.
25. Onuba O. Chronic osteomyelitis. Use of ipsilateral fibular graft for diaphyseal defects of the tibia. Trop Geogr Med. 1988;40:139-42.
26. Fowles JV, Lehoux J, Zlitni M, Kassab MT, Nolan B. Tibial defect due to acute haematogenous osteomyelitis: treatment and results in twenty-one children. J Bone Joint Surg Br. 1979;61:77-81.
27. Tuli SM. Bridging of bone defects by massive bone grafts in tumorous conditions and in osteomyelitis. Clin Orthop Relat Res. 1972;87:60-73.
28. Müller-Färber JA, Wittner B. Autogenous fibula grafting of a radial defect complicating acute hematogenous osteomyelitis in a child. Arch Orthop Trauma Surg. 1987;106:186-91.
29. Daoud A, Saighi-Bouaouina A. Treatment of sequestra, pseudarthroses, and defects in the long bones of children who have chronic hematogenous osteomyelitis. J Bone Joint Surg Am. 1989;71:1448-68.
30. Onuoha KM, Bassey AO, Omotola O, Adedapo A. Tibia gap nonunion following sequestrectomy treated with a non vascularized fibula strut graft. Niger J Clin Pract. 2021;24:1096-99.
31. Steinlechner CW, Mkandawire NC. Non-vascularised fibular transfer in the management of defects of long bones after sequestrectomy in children. J Bone Joint Surg Br. 2005;87:1259-63.
32. Kaewpornsawan K, Eamsobhana P. Free non-vascularized fibular graft for treatment of large bone defect around the elbow in pediatric patients. Eur J Orthop Surg Traumatol. 2017;27:895-900.
33. Baumbach SF, Hobohm L, Wozasek GE. A treatment strategy for complex cases of osteomyelitis in children and its applicability on three exemplary cases. J Pediatr Orthop B. 2011;20:432-5.
34. Zalavras CG, Femino D, Triche R, Zionts L, Stevanovic M. Reconstruction of large skeletal defects due to osteomyelitis with the vascularized fibular graft in children. J Bone Joint Surg Am. 2007;89:2233-40.
35. Pinto D, Mehta R, Agashe M. Lengthening after nonvascularized fibula grafting for large postinfective bone defect: a case report with long follow-up. JBJS Case Connect. 2021;11.
36. Gupta G, Shah MM, Raibagkar S, Shah A, Rabbi Q. Reconstruction of post-osteomyelitis 1st ray phalangeal loss by reverse dermis cross toe flap and fibula bone grafting: A rare case report. Foot (Edinb). 2021;49:101782.
37. Swamy MK, Rathi A, Gupta V. Results of non-vascularised fibular grafting in gap non-union of long bones in paediatric age group. J Clin Orthop Trauma. 2013;4:180-4.
38. Yadav SS. Dual-fibular grafting for massive bone gaps in the lower extremity. J Bone Joint Surg Am. 1990;72:486-94.


How to Cite this Article:  Agarwal A, Ankur, Jain A | Role of Non Vascularized Fibula Graft in the Management of Post Osteomyelitic Bone Defects in Children | International Journal of Paediatric Orthopaedics | January-April 2022; 8(1): 24-30.

(Article Text HTML)      (Full Text PDF)


Diagnosis of Pediatric Musculoskeletal Infections: Current Concepts Review

Volume 8 | Issue 1 | January-April 2022 | Page: 14-23 | Neeraj Vij, Jessica Burns, Melissa Esparza, Alexandra Dominianni, Yerin Cho, Mohan V Belthur

DOI-10.13107/ijpo.2022.v08i01.129


Authors: Neeraj Vij BS [1], Jessica Burns MD [2], Melissa Esparza MD [2], Alexandra Dominianni BA [1], Yerin Cho BS [1], Mohan V Belthur MD [1, 2]

[1] Department of Child Health & Orthopaedics, University of Arizona, College of Medicine, Phoenix, Arizona, USA.
[2] Department of Orthopedics, Phoenix Children’s Hospital, Phoenix, Arizona, USA.

Address of Correspondence
Dr. Mohan V. Belthur,
Department of Child Health & Orthopaedics, University of Arizona, College of Medicine, Phoenix, Arizona, USA. Department of Orthopedics, Phoenix Children’s Hospital, Phoenix, Arizona, USA.
E-mail: mbelthur@phoenixchildrens.com


Abstract

Introduction: Pediatric musculoskeletal infections are common and constitute one of the top five conditions contributing to the burden of musculoskeletal disease in childhood. With early accurate diagnosis and appropriate treatment, the clinical course, and outcomes of musculoskeletal infections can be favorable. However, poor outcomes (morbidity/mortality), a wide spectrum of post-infective sequela and significant functional impairment can occur, especially in the setting of delayed diagnosis and inadequate treatment. The purpose of this narrative review is to provide an overview of the standard diagnostic modalities with an emphasis on the recent literature and to summarize the current state of knowledge on the newer diagnostic modalities of the 21rst century.
Materials and Methods: A literature search was performed using the following keywords: “diagnosis”, OR “diagnostic modalities”, OR “diagnostic capability” AND “children” OR “pediatric” AND “musculoskeletal” OR “bony” OR “orthopedic” OR “muscular” AND “infection” OR “bacterial” OR “viral” OR “fungal”. Databases searched included PubMed, EMBASE, Cochrane Library, and SCOPUS. This returned a total of 315 articles. English language articles published between January 1990 and March 2022 regarding traditional or newer diagnostic modalities and pediatric musculoskeletal infection were included in this review.
Results: A total of 62 articles met the inclusion criteria. Our knowledge base regarding the traditional diagnostic modalities has evolved to include several scoring systems with good sensitivities and specificities. Cellular acute phase reactants show promise in the recent literature. There is good literature regarding the evolution of imaging techniques to improve diagnosis. Novel diagnostic modalities in the recent literature include plasma-based acute phase reactants, polymerase chain reaction, and next-generation sequencing.
Conclusion: Continuing to improve our diagnostic accuracy of Pediatric MSKIs can help decrease the worldwide burden of these conditions. As the use of adjunctive biomarkers becomes more common, diagnoses and pathogen identification could be made timelier and antibiotic choices could be individualized leading to improved outcomes. Limited sequence imaging techniques can reduce the associated costs. Polymerase chain reaction and next generation sequencing are important novel technologies that can revolutionize the diagnosis of pediatric musculoskeletal infection.
Keywords:  Paediatric, Musculoskeletal infection, Diagnosis.


References

1. Schwend RM. The Burden of Pediatric Musculoskeletal Diseases Worldwide. Orthop Clin North Am. 2020;51(2). doi:10.1016/j.ocl.2019.11.005
2. Ilharreborde B. Sequelae of pediatric osteoarticular infection. Orthop Traumatol Surg Res. 2015;101(1). doi:10.1016/j.otsr.2014.07.029
3. Alhinai Z, Elahi M, Park S, et al. Prediction of Adverse Outcomes in Pediatric Acute Hematogenous Osteomyelitis. Clin Infect Dis. 2020;72(9):454-464. doi:10.1093/cid/ciaa211
4. Belthur M V., Birchansky SB, Verdugo AA, et al. Pathologic fractures in children with acute Staphylococcus aureus osteomyelitis. J Bone Jt Surg – Ser A. 2012;94(1). doi:10.2106/JBJS.J.01915
5. Belthur M V., Esparza M, Fernandes JA, Chaudhary MM. Post Infective Deformities: Strategies for Limb Reconstruction. In: Pediatric Musculoskeletal Infections. ; 2022.
6. Furman MS, Restrepo R, Kritsaneepaiboon S, Laya BF, Plut D, Lee EY. Updates and Advances: Pediatric Musculoskeletal Infection Imaging Made Easier for Radiologists and Clinicians. Semin Musculoskelet Radiol. 2021;25(1). doi:10.1055/s-0041-1723004
7. Arkader A, Brusalis C, Warner WC, Conway JH, Noonan K. Update in Pediatric Musculoskeletal Infections: When It Is, When It Isn’t, and What to Do. J Am Acad Orthop Surg. Published online 2016. doi:10.5435/JAAOS-D-15-00714
8. Funk SS, Copley LAB. Acute Hematogenous Osteomyelitis in Children: Pathogenesis, Diagnosis, and Treatment. Orthop Clin North Am. 2017;48(2):199-208. doi:10.1016/j.ocl.2016.12.007
9. Vij N, Ranade AS, Kang P, Belthur M V. Primary Bacterial Pyomyositis in Children: A Systematic Review. J Pediatr Orthop. 2021;41(9). doi:10.1097/BPO.0000000000001944
10. Paakkonen M, Kallio MJT, Kallio PE, Peltola H. Sensitivity of erythrocyte sedimentation rate and C-reactive protein in childhood bone and joint infections. Clin Orthop Relat Res. 2010;468(3). doi:10.1007/s11999-009-0936-1
11. Levine MJ, McGuire KJ, McGowan KL, Flynn JM. Assessment of the test characteristics of C-reactive protein for septic arthritis in children. J Pediatr Orthop. 2003;23(3). doi:10.1097/00004694-200305000-00018
12. McMichael BS, Nickel AJ, Christensen EW, et al. Discriminative Accuracy of Procalcitonin and Traditional Biomarkers in Pediatric Acute Musculoskeletal Infection. Pediatr Emerg Care. 2021;37(12). doi:10.1097/pec.0000000000001978
13. Amaro E, Marvi TK, Posey SL, et al. C-Reactive protein predicts risk of venous thromboembolism in pediatric musculoskeletal infection. J Pediatr Orthop. 2019;39(1). doi:10.1097/BPO.0000000000001256
14. Woods CR, Bradley JS, Chatterjee A, et al. Clinical Practice Guideline by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America: 2021 Guideline on Diagnosis and Management of Acute Hematogenous Osteomyelitis in Pediatrics. J Pediatric Infect Dis Soc. 2021;10(8):801-844. doi:10.1093/jpids/piab027
15. Kocher MS, Mandiga R, Zurakowski D, Barnewolt C, Kasser JR. Validation of a clinical prediction rule for the differentiation between septic arthritis and transient synovitis of the hip in children. J Bone Jt Surg – Ser A. 2004;86(8). doi:10.2106/00004623-200408000-00005
16. Athey AG, Mignemi ME, Gheen WT, Lindsay EA, Jo CH, Copley LA. Validation and Modification of a Severity of Illness Score for Children with Acute Hematogenous Osteomyelitis. J Pediatr Orthop. 2019;39(2):90-97. doi:10.1097/BPO.0000000000000879
17. Welling BD, Haruno LS, Rosenfeld SB. Validating an algorithm to predict adjacent musculoskeletal infections in pediatric patients with septic arthritis. Clin Orthop Relat Res. 2018;476(1). doi:10.1007/s11999.0000000000000019
18. Stephanie N. Moore-Lotridge, PhD; Breanne H.Y. Gibson, BS; Matthew T. Duvernay, PhD; Jeffrey E. Martus MD; Isaac P. Thomsen MD, MSCI; Jonathan G. Schoenecker, MD P. Pediatric Musculoskeletal Infection – An Update Through the Four Pillars of Clinical Care and Immunothrombotic Similarities With COVID-19. JPOSNA. 2020;2(2):Online Only. Accessed 09/14/2021.
19. Arnold JC, Cannavino CR, Ross MK, et al. Acute bacterial osteoarticular infections: Eight-year analysis of C-reactive protein for oral step-down therapy. Pediatrics. 2012;130(4). doi:10.1542/peds.2012-0220
20. Roine I, Faingezicht I, Arguedas A, Herrera JF, Rodríguez F. Serial serum C–reactive protein to monitor recovery from acute hematogenous osteomyelitis in children. Pediatr Infect Dis J. 1995;14(1). doi:10.1097/00006454-199501000-00008
21. Chou ACC, Mahadev A. The use of c-Reactive protein as a guide for transitioning to oral antibiotics in pediatric osteoarticular infections. J Pediatr Orthop. 2016;36(2). doi:10.1097/BPO.0000000000000427
22. Kallio MJT, Unkila-Kallio L, Aalto K, Peltola H. Serum C-reactive protein, erythrocyte sedimentation rate and white blood cell count in septic arthritis of children. Pediatr Infect Dis J. 1997;16(4). doi:10.1097/00006454-199704000-00015
23. Roine I, Arguedas A, Faingezicht I, Rodriguez F. Early detection of sequela-prone osteomyelitis in children with use of simple clinical and laboratory criteria. Clin Infect Dis. 1997;24(5). doi:10.1093/clinids/24.5.849
24. Martin AC, Anderson D, Lucey J, et al. Predictors of outcome in pediatric osteomyelitis: Five years experience in a single tertiary center. Pediatr Infect Dis J. 2016;35(4). doi:10.1097/INF.0000000000001031
25. Ceroni D, Cherkaoui A, Ferey S, Kaelin A, Schrenzel J. Kingella kingae osteoarticular infections in young children: Clinical features and contribution of a new specific real-time PCR assay to the diagnosis. J Pediatr Orthop. 2010;30(3). doi:10.1097/BPO.0b013e3181d4732f
26. Ju KL, Zurakowski D, Kocher MS. Differentiating between methicillin-resistant and methicillin-sensitive Staphylococcus aureus osteomyelitis in children: An evidence-based clinical prediction algorithm. J Bone Jt Surg – Ser A. 2011;93(18). doi:10.2106/JBJS.J.01154
27. Martínez-Aguilar G, Avalos-Mishaan A, Hulten K, Hammerman W, Mason EO, Kaplan SL. Community-acquired, methicillin-resistant and methicillin-susceptible Staphylococcus aureus musculoskeletal infections in children. Pediatr Infect Dis J. 2004;23(8). doi:10.1097/01.inf.0000133044.79130.2a
28. Burdette SD, Watkins RR, Wong KK, Mathew SD, Martin DJ, Markert RJ. Staphylococcus aureus pyomyositis compared with non-Staphylococcus aureus pyomyositis. J Infect. 2012;64(5). doi:10.1016/j.jinf.2012.01.005
29. Arnold SR, Elias D, Buckingham SC, et al. Changing patterns of acute hematogenous osteomyelitis and septic arthritis: Emergence of community-associated methicillin-resistant Staphylococcus aureus. J Pediatr Orthop. Published online 2006. doi:10.1097/01.bpo.0000242431.91489.b4
30. Rosenfeld S, Bernstein DT, Daram S, Dawson J, Zhang W. Predicting the presence of adjacent infections in septic arthritis in children. J Pediatr Orthop. 2016;36(1). doi:10.1097/BPO.0000000000000389
31. Katz SE, Crook J, McHenry R, Szeles A, Halasa N, Banerjee R. Prospective Observational Study to Determine Kinetics of Procalcitonin in Hospitalized Children Receiving Antibiotic Therapy for Non-Critical Acute Bacterial Infections. Infect Dis Ther. 2021;10(1). doi:10.1007/s40121-020-00358-7
32. Yu BZ, Fu J, Chai W, Hao LB, Chen JY. Neutrophil to lymphocyte ratio as a predictor for diagnosis of early Periprosthetic joint infection. BMC Musculoskelet Disord. 2020;21(1). doi:10.1186/s12891-020-03704-5
33. Kozak BM, Jaimes C, Kirsch J, Gee MS. Mri techniques to decrease imaging times in children. Radiographics. 2020;40(2). doi:10.1148/rg.2020190112
34. Copley LAB. Recent advances in the evaluation and treatment of pediatric musculoskeletal infection. Curr Orthop Pract. 2013;24(6). doi:10.1097/BCO.0000000000000037
35. Benvenuti MA, An TJ, Mignemi ME, Martus JE, Thomsen IP, Schoenecker JG. Effects of Antibiotic Timing on Culture Results and Clinical Outcomes in Pediatric Musculoskeletal Infection. J Pediatr Orthop. 2019;39(3):158-162. doi:10.1097/BPO.0000000000000884
36. Brolin TJ, Hackett DJ, Abboud JA, Hsu JE, Namdari S. Routine cultures for seemingly aseptic revision shoulder arthroplasty: are they necessary? J Shoulder Elb Surg. 2017;26(11). doi:10.1016/j.jse.2017.07.006
37. Lyon RM, Evanich JD. Culture-negative septic arthritis in children. J Pediatr Orthop. 1999;19(5). doi:10.1097/01241398-199909000-00020
38. Ilharreborde B, Bidet P, Lorrot M, et al. New real-time PCR-based method for Kingella kingae DNA detection: Application to samples collected from 89 children with acute arthritis. J Clin Microbiol. 2009;47(6). doi:10.1128/JCM.00144-09
39. Vij N, Singleton I, Kang P, Esparza M, Burns J, Belthur M V. Clinical Scores Predict Acute and Chronic Complications in Pediatric Osteomyelitis: An External Validation. J Pediatr Orthop. Published online 2022. doi:0.1097/BPO.0000000000002159
40. Russell CD, Ramaesh R, Kalima P, Murray A, Gaston MS. Microbiological characteristics of acute osteoarticular infections in Children. J Med Microbiol. 2015;64(4). doi:10.1099/jmm.0.000026
41. Schoenecker JG. Defining the volume of consultations for musculoskeletal infection encountered by pediatric orthopaedic services in the United States. PLoS One. 2020;15(6). doi:10.1371/journal.pone.0234055
42. Chen MF, Chang CH, Yang LY, et al. Synovial fluid interleukin-16, interleukin-18, and cReLD2 as novel biomarkers of prosthetic joint infections. Bone Jt Res. 2019;8(4). doi:10.1302/2046-3758.84.BJR-2018-0291.R1
43. Lee YS, Koo KH, Kim HJ, et al. Synovial fluid biomarkers for the diagnosis of periprosthetic joint infection : A systematic review and meta-Analysis. J Bone Jt Surg – Am Vol. 2017;99(24). doi:10.2106/JBJS.17.00123
44. Deirmengian C, Kardos K, Kilmartin P, Cameron A, Schiller K, Parvizi J. Diagnosing Periprosthetic Joint Infection: Has the Era of the Biomarker Arrived? Clin Orthop Relat Res. 2014;472(11). doi:10.1007/s11999-014-3543-8
45. Oppenheim JJ, Biragyn A, Kwak LW, Yang D. Roles of antimicrobial peptides such as defensins in innate and adaptive immunity. In: Annals of the Rheumatic Diseases. Vol 62. ; 2003. doi:10.1136/ard.62.suppl_2.ii17
46. Li Z, Li C, Wang G, et al. Diagnostic accuracy of synovial fluid D-lactate for periprosthetic joint infection: a systematic review and meta-analysis. J Orthop Surg Res. 2021;16(1). doi:10.1186/s13018-021-02778-8
47. Deirmengian C, Kardos K, Kilmartin P, Cameron A, Schiller K, Parvizi J. Combined measurement of synovial fluid a-defensin and C-reactive protein levels: Highly accurate for diagnosing periprosthetic joint infection. J Bone Jt Surg – Am Vol. 2014;96(17). doi:10.2106/JBJS.M.01316
48. Al-Qwbani M, Jiang N, Yu B. Kingella kingae-Associated Pediatric Osteoarticular Infections: An Overview of 566 Reported Cases. Clin Pediatr (Phila). 2016;55(14). doi:10.1177/0009922816629620
49. Gan C, Hu J, Cao Q, et al. Rapid identification of pathogens involved in pediatric osteoarticular infections by multiplex PCR. Ann Transl Med. 2020;8(5). doi:10.21037/atm.2020.01.34
50. Ramchandar N, Burns J, Coufal NG, et al. Use of Metagenomic Next-Generation Sequencing to Identify Pathogens in Pediatric Osteoarticular Infections. Open Forum Infect Dis. 2021;8(7). doi:10.1093/ofid/ofab346
51. Kadri K. Polymerase Chaiin Reaction (PCR): Principle and Applications. Intech. Published online 2019.
52. Shah NJ. Polymerase chain reaction. In: Introduction to Basics of Pharmacology and Toxicology: Volume 1: General and Molecular Pharmacology: Principles of Drug Action. ; 2019. doi:10.1007/978-981-32-9779-1_31
53. Kanno A, Sato T, Mitoma M, Murakami K. A method for sex identification in asparagus using DNA from seeds. Euphytica. 2017;213(9). doi:10.1007/s10681-017-2017-y
54. Held MFG, Hoppe S, Laubscher M, et al. Epidemiology of musculoskeletal tuberculosis in an area with high disease prevalence. Asian Spine J. 2017;11(3). doi:10.4184/asj.2017.11.3.405
55. Williams N, Cooper C, Cundy P. Kingella kingae septic arthritis in children: Recognising an elusive pathogen. J Child Orthop. 2014;8(1). doi:10.1007/s11832-014-0549-4
56. Awwad E, Tolley M, Antoniou G, Williams N. Clinical presentations of Kingella kingae musculoskeletal infections in South Australian children. J Paediatr Child Health. 2021;57(8). doi:10.1111/jpc.15422
57. Wong M, Williams N, Cooper C. <p>Systematic Review of <em>Kingella kingae</em> Musculoskeletal Infection in Children: Epidemiology, Impact and Management Strategies</p>. Pediatr Heal Med Ther. 2020;Volume 11. doi:10.2147/phmt.s217475
58. Drovandi L, Trapani S, Richichi S, Lasagni D, Resti M. Primary Pyomyositis as Unusual Cause of Limp: Three Cases in Immunocompetent Children and Literature Review. J Pediatr Infect Dis. 2018;13(3). doi:10.1055/s-0037-1604036
59. Juchler C, Spyropoulou V, Wagner N, et al. The Contemporary Bacteriologic Epidemiology of Osteoarticular Infections in Children in Switzerland. J Pediatr. 2018;194. doi:10.1016/j.jpeds.2017.11.025
60. Ceroni D, Dayer R, Steiger C. Are we approaching the end of pediatric culture-negative osteoarticular infections? Future Microbiol. 2019;14(11). doi:10.2217/fmb-2019-0141
61. Wood JB, Sesler C, Stalons D, et al. Performance of TEM-PCR vs culture for bacterial identification in pediatric musculoskeletal infections. Open Forum Infect Dis. 2018;5(6). doi:10.1093/ofid/ofy119
62. Dong L, Wang W, Li A, et al. Clinical Next Generation Sequencing for Precision Medicine in Cancer. Curr Genomics. 2015;16(4). doi:10.2174/1389202915666150511205313
63. Borate U, Absher D, Erba HP, Pasche B. Potential of whole-genome sequencing for determining risk and personalizing therapy: focus on AML. Expert Rev Anticancer Ther. 2012;12(10). doi:10.1586/era.12.116
64. Alekseyev YO, Fazeli R, Yang S, et al. A next-generation sequencing primer—how does it work and what can it do? Acad Pathol. 2018;5. doi:10.1177/2374289518766521
65. Roper PM, Eichelberger KR, Cox L, et al. Contemporary clinical isolates of Staphylococcus aureus from pediatric osteomyelitis patients display unique characteristics in a mouse model of hematogenous osteomyelitis. Infect Immun. 2021;89(10). doi:10.1128/IAI.00180-21
66. Pasche B, Absher D. Whole-Genome sequencing: A step closer to personalized medicine. JAMA – J Am Med Assoc. 2011;305(15). doi:10.1001/jama.2011.484
67. Stenson PD, Mort M, Ball E V., Shaw K, Phillips AD, Cooper DN. The Human Gene Mutation Database: Building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet. 2014;133(1). doi:10.1007/s00439-013-1358-4
68. Michalowitz A, Yang J, Castaneda P, Litrenta J. Existing and emerging methods of diagnosis and monitoring of pediatric musculoskeletal infection. Injury. 2020;51(10). doi:10.1016/j.injury.2020.06.020
69. Rossen JWA, Friedrich AW, Moran-Gilad J. Practical issues in implementing whole-genome-sequencing in routine diagnostic microbiology. Clin Microbiol Infect. 2018;24(4). doi:10.1016/j.cmi.2017.11.001
70. Schwarze K, Buchanan J, Taylor JC, Wordsworth S. Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet Med. 2018;20(10). doi:10.1038/gim.2017.247
71. Song Z, Lillehaugen T, Wallace J. Out-of-Network Laboratory Test Spending, Utilization, and Prices in the US. JAMA – J Am Med Assoc. 2021;325(16). doi:10.1001/jama.2021.0720
72. Health H. How much does an ultrasound cost? https://www.honorhealth.com/patients-visitors/average-pricing/ultrasound-costs
73. New Choice Health. How much does a CT scan cost? https://www.newchoicehealth.com/ct-scan/cost
74. Vaishya R, Sardana R, Butta H, Mendiratta L. Laboratory diagnosis of Prosthetic Joint Infections: Current concepts and present status. J Clin Orthop Trauma. 2019;10(3). doi:10.1016/j.jcot.2018.10.006


How to Cite this Article:  Vij N, Burns J, Esparza M, Dominianni A, Cho Y, Belthur MV | Septic Arthritis Management: Current Guidelines | International Journal of Paediatric Orthopaedics | January-April 2022; 8(1): 14-23.

(Article Text HTML)      (Full Text PDF)


Septic Arthritis Management: Current Guidelines

Volume 8 | Issue 1 | January-April 2022 | Page: 08-13 | Gaurav Gupta, Easwar T. Ramani, Gaurav Garg, Maulin Shah
DOI-10.13107/ijpo.2022.v08i01.128


Authors: Gaurav Gupta MS Ortho. [1, 2], Easwar T. Ramani MS Ortho. [3, 4 ], Gaurav Garg MS Ortho. [5], Maulin Shah MS Ortho. [6]

[1] Department of Paediatric Orthopaedics, Asian Hospital, Faridabad, UP, India.
[2] Department of Orthopaedics, Child Ortho Clinic, Faridabad & Delhi, India.
[3] Department of Paediatric Orthopaedics, Baby Memorial Hospital, Kozhikode, Kerala, India.
[4] Department of Paediatric Orthopaedics and Spine Surgery, Palakkad District Cooperative & Research Centre, Palakkad, Kerala, India.
[5] Department of Paediatric Orthopaedics, Excelcare Hospital, Jaipur, India.
[6] Department of Paediatric Orthopaedics, Orthokid Clinic, Ahmedabad, Gujarat, India.

Address of Correspondence
Dr. Maulin Shah,
Consultant Paediatric Orthopaedic Surgeon, Orthokid Clinic, Ahmedabad, Gujarat, India.
E-mail: maulinmshah@gmail.com


Abstract

Septic arthritis is an orthopaedic emergency that is more commonly seen in infants and young children. Release of proteolytic enzymes leads to permanent destruction of intra-articular cartilage and subchondral bone as early as 72 hours after onset. Hip and knee are the most commonly involved joints. Staphylococcus aureus is the most common causative organism across all paediatric age groups. Recently, there is a significant increase in incidence of Klebsiella and Pseudomonas, especially in neonates. Sensitivity patterns of causative organisms are also changing with increasing resistance to empirical antibiotics, requiring the use of higher antibiotics.
The detection of septic arthritis in neonates is challenging. The physician has to rely on indirect signs and maintain a high index of suspicion. C-reactive protein (CRP) along with difficulty in weight bearing have a better predictive value in diagnosis. Ultrasonography (USG) is a useful tool for quick screening of a joint and to detect effusion. Many recent studies have suggested percutaneous drainage/aspiration as an equally effective modality to manage septic joints, thus avoiding the morbidity of open arthrotomy and the risks of general anaesthesia. Lack of response to minimally invasive methods warrant an open approach. Antero-lateral arthrotomy is preferred over the posterior approach to avoid iatrogenic damage to the blood supply of the femoral head. Arthroscopic lavage of the septic joint is also becoming popular. The choice of empiric antibiotic treatment should be based on age, vaccination status and underlying co-morbidities. There is growing evidence in literature for short-course intravenous (IV) therapy. Delayed diagnosis, sickle cell disease, and infection caused by certain strains of methicillin-resistant staphylococcus aureus (MRSA) are predispose to orthopaedic sequelae.
Keywords:  Septic Arthritis, Arthrotomy, Osteomyelitis.


References

1. Momodu II, Savaliya V. Septic Arthritis.In:StatPearls[Internet.Treasure Island(FL):StatPearlsPublishing;2022 https://www.ncbi.nlm.nih.gov/books/NBK538176/
2. Anil Agarwal, Aditya N. Aggarwal. Bone and Joint Infections in Children: Septic Arthritis. Indian J Pediatr 2015 July 21. DOI 10.1007/s12098-015-1816-1.
3. T. Sreenivas, A. R. Nataraj, Anand Kumar, Jagdish Menon. Neonatal septic arthritis in a tertiary care hospital: a descriptive study. Eur J Orthop Surg Traumatol 2016 May 6. DOI 10.1007/s00590-016-1776-9.
4. Gireesh Sankaran, Balaji Zacharia1, Antony Roy1, Sulaikha Puthan Purayil. Current clinical and bacteriological profile of septic arthritis in young infants: a prospective study from a tertiary referral centre. European Journal of Orthopaedic Surgery & Traumatology 2018 February 9. https://doi.org/10.1007/s00590-018-2142-x.
5. Rai A, Chakladar D, Bhowmik S, Mondal T, Nandy A, Maji B, et al. Neonatal septic arthritis: Indian perspective. Eur J Rheumatol 2020; 7(Suppl 1): S72-S77.
6. Agarwal A, Aggarwal AN. Septic arthritis in children. In: Agarwal A, Aggarwal AN, editors. Pediatric osteoarticular infections. Delhi: Jaypee; 2014. p. 60–74.
7. Giovanni Autore, Luca Bernardi, Susanna Esposito. Update on Acute Bone and Joint Infections in Paediatrics: A Narrative Review on the Most Recent Evidence-Based Recommendations and Appropriate Anti Infective Therapy. Antibiotics 2020, 9, 486; doi:10.3390/antibiotics9080486.
8. Sultan J, Hughes PJ. Septic arthritis or transient synovitis of the hip in children: the value of clinical prediction algorithms. J Bone Joint Surg Br. 2010;92(9):1289–1293.
9. Ju KL, Zurakowski D, Kocher MS. Differentiating between methicillin-resistant and methicillin-sensitive Staphylococcus aureus osteomyelitis in children: an evidence-based clinical prediction algorithm. J Bone Joint Surg Am. 2011;93(18):1693–1701
10. Yagupsky P, Dubnov-Raz G, Gené A, Ephros M, Israeli-Spanish Kin-gella kingae Research Group Differentiating Kingella kingae septic arthritis of the hip from transient synovitis in young children. J Pediatr. 2014;165(5):985–989.
11. Kocher MS, Mandiga R, Zurakowski D, Barnewolt C, Kasser JR. Validation of a clinical prediction rule for the differentiation between septic arthritis and transient synovitis of the hip in children. J Bone Joint Surg Am. 2004 Aug;86(8):1629-35. doi: 10.2106/00004623-200408000-00005. PMID: 15292409.
12. Pääkkönen M. Septic arthritis in children: diagnosis and treatment. Pediatric Health Med Ther. 2017;8:65-68. Published 2017 May 18. 10.2147/PHMT.S115429.
13. Singhal R, Perry DC, Khan FN, Cohen D, Stevenson HL, James LA, Sampath JS, Bruce CE. The use of CRP within a clinical prediction algorithm for the differentiation of septic arthritis and transient synovitis in children. J Bone Joint Surg Br. 2011 Nov;93(11):1556-61. doi: 10.1302/0301-620X.93B11.26857. PMID: 22058311.
14. Krogstad P. Osteomyelitis and septic arthritis. In: Feigin RD, Cherry JD, editors. Textbook of Pediatric Infectious Diseases. 6th ed. Philadelphia, PA: Saunders; 2009. pp. 725–748.
15. G. Fabry, E. Miere. Septic arthritis hip in children : poor results after late and inadequate treatment. JPO -A , 3: 461-466, 1983.
16. W A Herndon, S Knauer, J A Sullivan, R H Gross. Management of septic arthritis in children. J Pediatr Ortho, Sep-Oct 1986;6(5):576-8. doi: 10.1097/01241398-198609000-00009.
17. Uri Givon 1, Boaz Liberman, Amos Schindler, Alexander Blankstein, Abraham Ganel. Treatment of septic arthritis of the hip joint by repeated ultrasound-guided aspirations. J Pediatr Orthop May-Jun 2004;24(3):266-70. doi: 10.1097/00004694-200405000-00006.
18. Daniel M Weigl 1, Tali Becker, Eyal Mercado, Elhanan Bar-On. Percutaneous aspiration and irrigation technique for the treatment of pediatric septic hip: effectiveness and predictive parameters. J Pediatr Orthop B 2016 Nov;25(6):514-9. doi: 10.1097/BPB.0000000000000345.
19. Ahmad Essa 1, Michael Asa’af, Haim Shtarker. Preliminary results: continuous double luminal catheter drainage for the management of septic hip arthritis in children. J Pediatr Orthop B,2022 Jan 1;31(1):e11-e16. doi: 10.1097/BPB.0000000000000866.
20. Kristin S Livingston 1, Leslie A Kalish 2, Donald S Bae 3, Young-Jo Kim 3, Benjamin J Shore. Wash, Rinse, Repeat: Which Patients Undergo Serial Joint Irrigation in Pediatric Septic Hip Arthritis? J Pediatr Orthop. 2019 Aug;39(7):e494-e499. doi: 10.1097/BPO.0000000000001323.
21. Gaurav Gupta 1, Qaisur Rabbi, Vikas Bohra, Maulin M Shah. Protrusio acetabulae as a sequel to septic arthritis of the hip with obturator internus pyomyositis. J Pediatr Orthop B,2021 Nov 1;30(6):572-578. doi: 10.1097/BPB.0000000000000823.
22. Garg R, Ho J, Gourineni PV. Simplified arthroscopic lavage of pediatric septic hip: case series. J Pediatr Orthop B. 2020 May;29(3):304-308. doi: 10.1097/BPB.0000000000000717.
23. Thompson RM, Gourineni P. Arthroscopic Treatment of Septic Arthritis in Very Young Children. J Pediatr Orthop. 2017 Jan;37(1):e53-e57. doi: 10.1097/BPO.0000000000000659
24. Eric W Edmonds 1 2, Christina Lin 1, Christine L Farnsworth 2, James D Bomar 2, Vidyadhar V Upasani 1 2 . A Medial Portal for Hip Arthroscopy in Children With Septic Arthritis: A Safety Study. J Pediatr Orthop Nov/Dec 2018;38(10):527-531. doi: 10.1097/BPO.0000000000000861.
25. Scott Rosenfeld 1, Derek T Bernstein, Shiva Daram, John Dawson, Wei Zhang. Predicting the Presence of Adjacent Infections in Septic Arthritis in Children. J Pediatr Orthop 2016 Jan;36(1):70-4. doi: 10.1097/BPO.0000000000000389.
26. Corey O Montgomery 1, Eric Siegel, Robert D Blasier, Larry J Suva. Concurrent septic arthritis and osteomyelitis in children. J Pediatr Orthop , 2013 Jun;33(4):464-7. doi: 10.1097/BPO.0b013e318278484f.
27. Jedidiah E Schlung 1, Tracey P Bastrom 2, Joanna H Roocroft 2, Peter O Newton 2, Scott J Mubarak 1 2, Vidyadhar V Upasani. Femoral Neck Aspiration Aids in the Diagnosis of Osteomyelitis In Children With Septic Hip. J Pediatr Orthop ,Nov/Dec 2018;38(10):532-536. doi: 10.1097/BPO.0000000000000868.
28.Clinical Practice Guideline by PIDS and IDSA • JPIDS 2021
29. Ohl CA. Infectious arthritis of native joints. In: Mandell GL, Bennett JE, Dolin R, eds. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. 7th ed. Philadelphia, Pa.: Churchill Livingstone; 2010:1443-1456.
30. Liu C, Bayer A, Cosgrove SE, et al; Infectious Diseases Society of America. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52(3):e18–e55
31. No authors listed. British Society for Antimicrobial Chemotherapy.http://www.bsac.org.uk/pyxis/Bone%20and%20joint/Septic%20arthritis/Septic%20arthritis.htm(date last accessed 28 February 2009).
32. Vinod MB, Matussek J, Curtis N, Graham HK, Carapetis JR. Duration of antibiotics in children with osteomyelitis and septic arthritis. J Paediatr Child Health 2002;38:363-7
33. Peltola H, Paakkonen M, Kallio P, Kallio MJ; OM-SA Study Group. Clindamycin vs. first-generation cephalosporins for acute osteoarticular infections of childhood – a prospective quasi-randomized controlled trial. Clin Microbiol Infect. 2012;18(6):582–589.
34. Peltola H, Paakkonen M, Kallio P, Kallio MJ; Osteomyelitis-Septic Arthritis (OM-SA) Study Group. Prospective, randomized trial of 10 days versus 30 days of antimicrobial treatment, including a short-term course of parenteral therapy, for childhood septic arthritis. Clin Infect Dis. 2009;48(9):1201–1210


How to Cite this Article:  Gupta G, Ramani ET, Garg G, Shah M | Septic Arthritis Management: Current Guidelines | International Journal of Paediatric Orthopaedics | January-April 2022; 8(1): 08-13.

(Article Text HTML)      (Full Text PDF)


Pelvic Pyomyositis in Children: Current Concepts Review

Volume 8 | Issue 1 | January-April 2022 | Page: 02-07 | Archan Desai, Ashish Ranade, Mohan V. Belthur, Sandeep Patwardhan, Gauri A. Oka
DOI-10.13107/ijpo.2022.v08i01.127


Authors: Archan Desai [1], Ashish Ranade [1, 2], Mohan V. Belthur [3], Sandeep Patwardhan [4], Gauri A. Oka [1]

[1] Department of Orthopaedics, Bharati Hospital and Research Centre, Pune, Maharashtra, India.
[2] Department of Orthopaedics, Deenanath Mangeshkar Hospital, Pune, Maharashtra, India.
[3] Department of Child Health & Orthopaedics, University of Arizona College of Medicine-Phoenix, USA.
[4] Department of Orthopaedics, Sancheti Hospital, Pune, Maharashtra, India.

Address of Correspondence
Dr. Ashish Ranade,
Consultant Paediatric Orthopaedic Surgeon, Deenanath Mangeshkar Hospital, Pune, Maharashtra, India. Visiting Pediatric Orthopaedic Surgeon, Bharati Vidyapeeth Medical College Hospital, Pune, Maharashtra, India
E-mail: ranadea2@gmail.com


Abstract

Pyomyositis in children is an uncommon bacterial infection of skeletal muscles which has more frequently been described in tropical areas, but it is becoming increasingly recognized in temperate climates too. Any muscle group in the body can be involved, but it commonly affects the large muscle groups which are located around the pelvic girdle and lower extremities. Clinical presentation is very similar to septic arthritis of the hip and needs to be diagnosed early. MRI is the investigation of choice. Depending on the severity this condition, it can be treated conservatively with antibiotics in its early stage and with percutaneous or formal incision and drainage in later stages. Generally, if it is diagnosed early, good outcomes can be expected.
Keywords: Pelvic Pyomyositis, Septic arthritis, Infection, Magnetic resonance imaging


References

1. Bickels J, Ben-Sira L, Kessler A, Wientroub S. Primary pyomyositis. J Bone Joint Surg Am. 2002; 84(12):2277-2286.
2. Anand SV, Evans KT. Pyomyositis. Br J Surg. 1964; 51:917-920.
3. Levin MJ, Gardner P, Waldvogel FA. An un-usual infection due to staphylococcus aureus. N Engl J Med. 1971; 284(4):196-198.
4. Ciampi MA, Sadigh M, Sherwood JA, Protopapas Z, Thornton GF, Andriole VT. Temperate pyomyositis at two community hos-pitals. Infect Dis Clin Pract. 1998; 7:265-273.
5. Chiedozi LC: Pyomyositis: review of 205 cases in 112 patients, Am J Surg 137:255, 1979
6. De Boeck H, Noppen L, Desprechins B: Pyomyositis of the adductor muscles mimicking an infection of the hip. Diagnosis by magnetic resonance imaging: a case report, J Bone Joint Surg Am 76:747, 1994.
7. Hernandez RJ, Strouse PJ, Craig CL, et al: Focal pyomyositis of the perisciatic muscles in children, AJR Am J Roentgenol 179:1267, 2002.
8. Kadambari D, Jagdish S: Primary pyogenic psoas abscess in children, Pediatr Surg Int 16:408, 2000.
9. Orlicek SL, Abramson JS, Woods CR, et al: Obturator internus muscle abscess in children, J Pediatr Orthop 21:744, 2001.
10. Garcia-Mata S, Hidalgo-Ovejero A, Esparza-Estaun J. Primaryobturator-muscle pyomyositis in immunocompetent children. JChild Orthop. 2012;6:205–15.
11. Taksande A, Vilhekar K, Gupta S. Primary pyomyositis in a child. Int J Infect Dis. 2009;13(4):e149–51.
12. Christin L, Sarosi GA. Pyomyositis in North America: case reports and review. Clin Infect Dis. 1992;15:668–77.
13. Crum NF (2004) Bacterial pyomyositis in the United States. Am JMed 117(6):420–428
14. Moriarty P, Leung C, Walsh M, Nourse C (2015) Increasingpyomyositis presentations among children in Queensland,Australia. Pediatr Infect Dis J 34(1):1–4
15. Brown JD, Wheeler B (1984) Pyomyositis. Report of 18 cases inHawaii. Arch Intern Med 144(9):1749–1751
16. Verma S, Singhi SC, Marwaha RK, et al. Tropical pyomyositis inchildren: 10 years experience of a tertiary care hospital in northernIndia. J Trop Pediatr. 2013;59(3):243–5.
17. Gambhir IS, Singh DS, Gupta SS, Gupta PR, Kumar M. Tropicalpyomyositis in India: a clinico-histopathological study. J Trop MedHyg. 1992;95(1):42–6.
18. Malhotra P, Singh S, Sud A, et al. Tropical pyomyositis-experienceof a tertiary care hospital in North West India. J Assoc PhysiciansIndia. 2000;48:1057–60.
19. Chauhan S, Kumar R, Singh KK, Chauhan SS. Tropical pyomyositis: adiagnostic dilemma. J Ind Acad Clin Med. 2004;5:52–4.
20. Chauhan S, Jain S, Varma S, Chauhan SS. Tropical pyomyositis(myositis tropicans): current prospective. Postgrad Med J. 2004;80:267–70.
21. Smith MI, Vickers AB. Natural history of 338 treated and untreatedpatients with staphylococcal septicaemia (1936–1955). Lancet.1960;1(7138):1318–22.
22. Jayoussi R, Bialik V, Eyal A, Shehadeh N, Etzioni A. Pyomyositiscaused by vigorous exercise in a boy. Acta Paediatr. 1995;84(2):226–7.
23. Singh SB, Singh VP, Gupta S, Gupta RM, Sunder S. Tropical myo-sitis: a clinical, immunological and histopathological study. J AssocPhysicians India. 1989;37(9):561–3
24. Flier S, Dolgin SE, Saphir RL, et al: A case confirming the progressive stages of pyomyositis, J Pediatr Surg 38:1551, 2003.
25. .Moriarty, Leung C, Walsh M, Nourse C. Increasing pyomyositis presenting among children in Queensland, Australia. PediatrInfect Dis J. 2015;34(1):1–4.
26. Pannaraj PS, Hulten KG, Gonzalez BE, Mason Jr EO, Kaplan SL.Infective pyomyositis and myositis in children in the era of com-munity-acquired, methicillin-resistant Staphylococcus aureus infec-tion. Clin Infect Dis. 2006;43:953–60.
27. Mitchell PD, Hunt DM, Lyall H, Nolam M, et al. Panton-Valentineleukocidin-secreting Staphylococcus aureus causing sever muscu-loskeletal sepsis in children. A new threat. J Bone Joint Surg (Br).2007;89:1239–42.
28. Menge TJ, Cole HA, Mignemi ME, et al. Medial approach fordrainage of the obturator musculature in children.J Pediatr Orthop.2014;34:307–315.
29. Spiegel DA, Meyer JS, Dormans JP, et al. Pyomyositis in childrenand adolescents: report of 12 cases and review of the literature.JPediatr Orthop. 1999;19:143–150.
30. Renwick SE, Ritterbusch JF. Pyomyositis in children.J PediatrOrthop. 1993;13:769–772.
31. Mazur JM, Ross G, Cummings J, et al. Usefulness of magneticresonance imaging for the diagnosis of acute musculoskeletalinfections in children.J Pediatr Orthop. 1995;15:144–147.
32. Peckett WR, Butler-Manuel A, Apthorp LA. Pyomyositis of theiliacus muscle in a child.J Bone Joint Surg Br. 2001;83:103–105.
33. Thomas S, Tytherleigh-Strong G, Dodds R. Pyomyositis of theiliacus muscle in a child.J Bone Joint Surg Br. 2001;83:619–620.
34. Yuh WT, Schreiber AE, Montgomery WJ, et al. Magnetic resonanceimaging of pyomyositis.Skeletal Radiol. 1988;17:190–193.
35. Kocher MS, Zurakowski D, Kasser JR (1999) Differentiating be-tween septic arthritis and transient synovitis of the hip in children:an evidence- based clinical prediction algorithm. J Bone Joint SurgAm 81(12):1662–1670
36. Bertrand SL, Lincoln ED, Prohaska MG. Primary pyomyositis ofthe pelvis in children: a retrospective review of 8 cases.Orthopedics. 2011;34(12):832–40.
37. Unnikrishnan PN, Perry DC, George H, Bassi R, Bruce CE.Tropical primary pyomyositis in children of the UK: an emerging medical challenge. Int Orthop. 2010;34:109–13.
38. Kiran M, Mohamed S, Newton A, George H, Garg N, Bruce C. Pelvic pyomyositis in children: changing trends in occurrence and management. Int Orthop. 2018 May;42(5):1143-1147.
39. Birkbeck D, Watson JT (1995) Obturator internus pyomyositis. Acase report. Clin Orthop Relat Res 316:221–226
40. Tucker RE, Winter WG, Del Valle C, Uematsu A, Libke R(1978) Pyomyositis mimicking malignant tumor. Three casereports. J Bone Joint Surg Am 60:701–703
41. Karmazyn B, Loder RT, Kleiman MB, et al. The role of pelvicmagnetic resonance in evaluating nonhip sources of infection inchildren with acute nontraumatic hip pain.J Pediatr Orthop.2007;27:158–164.
42. Ovadia D, Ezra E, Ben-Sira L, et al. Primary pyomyositis inchildren: a retrospective analysis of 11 cases.J Pediatr Orthop B.2007;16:153–159.
43. Browne LP, Mason EO, Kaplan SL, et al. Optimal imaging strategyfor community-acquiredStaphylococcus aureusmusculoskeletalinfections in children.Pediatr Radiol. 2008;38:841–847.
44. Karmazyn B, Kleiman MB, Buckwalter K, et al. Acute pyomyositisof the pelvis: the spectrum of clinical presentations and MRfindings.Pediatr Radiol. 2006;36:338–343.
45. Marin C, Sanchez-Alegre ML, Gallego C, et al. Magnetic resonanceimaging of osteoarticular infections in children.Curr Probl DiagnRadiol. 2004;33:43–59.
46. Theodorou SJ, Theodorou DJ, Resnick D. MR imaging findings ofpyogenic bacterial myositis (pyomyositis) in patients with localmuscle trauma: illustrative cases.Emerg Radiol. 2007;14:89–96.
47. Damski GB, Garin EH, Ballinger WE, et al. Generalized non-suppurative myositis with staphylococcal septicemia. J Pediatr.1980;96:694–7.
48. Ameh EA (1999) Pyomyositis in children: analysis of 31 cases.Ann Trop Paediatr 19:263–265
49. Vij N, Ranade AS, Kang P, Belthur MV. Primary Bacterial Pyomyositis in Children: A Systematic Review. J Pediatr Orthop. 2021 Oct 1;41(9):e849-e854.
50. Song J, Letts M, Monson R (2001) Differentiation of psoasmuscle abscess from septic arthritis of the hip in children. ClinOrthop Relat Res 391:258–265
51. Armstrong DG, D’Amato CR, Strong ML (1993) Three cases ofstaphylococcal pyomyositis in adolescence, including one patientwith neurologic compromise. J Pediatr Orthop 13:452–455
52. Teague DC, Graney DO, Routt ML Jr. Retropubic vascular hazardsof the ilioinguinal exposure: a cadaveric and clinical study.J OrthopTrauma. 1996;10:156–159.
53. Karakurt L, Karaca I, Yilmaz E, et al. Corona mortis: incidence andlocation.Arch Orthop Trauma Surg. 2002;122:163–164.
54. Luhmann SJ, Jones A, Schootman M, et al. Differentiation betweenseptic arthritis and transient synovitis of the hip in children withclinical prediction algorithms.J Bone Joint Surg Am. 2004;86-A:956–962.
55. Chauhan S, Jain S, Varma S, Chauhan SS. Tropical pyomyositis (myositis tropicans): current perspective. Postgrad Med J. 2004 May;80(943):267-70.
56. White S, Stopka S, Nimityongskul P, Jorgensen D. Transgluteal Approach for Drainage of Obturator Internus Abscess in Pediatric Patients. J Pediatr Orthop. 2017 Jan;37(1):e62-e66.
57. Hall RL, Callaghan JJ, Moloney E, Martinez S, Harrelson JM(1990) Pyomyositis in a temperate climate. Presentation, diag-nosis, and treatment. J Bone Joint Surg Am 72:1240–1244
58. Mignemi ME, Menge TJ, Cole HA, Mencio GA, Martus JE, Lovejoy S, Stutz CM, Schoenecker JG. Epidemiology, diagnosis, and treatment of pericapsular pyomyositis of the hip in children. J Pediatr Orthop. 2014 Apr-May;34(3):316-25.
59. Gupta G, Rabbi Q, Bohra V, Shah MM. Protrusio acetabulae as a sequel to septic arthritis of the hip with obturator internus pyomyositis. J Pediatr Orthop B. 2021 Nov 1;30(6):572-578.


How to Cite this Article:  Desai A, Ranade A, Belthur MV, Patwardhan S, Oka GA | Pelvic Pyomyositis in Children: Current Concepts Review | International Journal of Paediatric Orthopaedics | January-April 2022; 8(1): 02-07.

(Article Text HTML)      (Full Text PDF)