Tag Archive for: Cobb

Assessment in adolescent scoliosis

Volume 6 | Issue 1 | Jan – April 2020 | Page 2-6 |  Connor J. S. McKee.


Authors : Connor J. S. McKee [1]

[1] Royal Victoria Hospital, 274 Grosvenor Rd, Belfast BT12 6BA, Belfast, Northern Ireland.

Address of Correspondence
Dr. Connor J. S. McKee,
Royal Victoria Hospital, 274 Grosvenor Rd, Belfast BT12 6BA, Belfast, Northern Ireland.
E-mail: connor.mckee@ntlworld.com,
cmckee43@qub.ac.uk


Abstract

Background: Adolescent idiopathic scoliosis is associated with lateral spinal curvature, vertebral rotation and rib cage distortion which disrupts normal, symmetrical thoracic movement leading to restriction of lung expansion and impaired pulmonary function. The effects of scoliosis on lung growth, airway function and exercise capacity are well documented but it is unclear how altered rib positioning affects lung function. This paper compares two different radiological measurements with pulmonary function.
Methods: The study compared two measures of deformity: Cobb angle and average rib-vertebral angle difference with pulmonary functioning. Existing literature describes Cobb angle as a useful indicator of pulmonary dysfunction. However, there are few reports on the use of rib-vertebral angle difference and these are limited to a single measurement taken at the apical vertebrae. This study of 53 patients used an average rib-vertebral angle difference over five vertebral levels. This measure gives a more representative measurement of the scoliotic deformity. This measure was then correlated with the patient’s Cobb angle and pulmonary function.
Results: Using Spearman’s rank correlation coefficient, average rib-vertebral angle difference correlated strongly with Cobb angle (0.83), forced vital capacity (-0.81), forced expiratory volume in 1 second (-0.76), and peak expiratory flow (-0.60).
Conclusions: The study found that measurement of Cobb angle is superior to average rib-vertebral angle difference across five vertebral levels.
Keywords: Idiopathic, scoliosis, RVAD, Cobb, measurement.
Study design: Retrospective correlation of pre-operative pulmonary function tests and radiological measurements


References 

1. Konieczny M, Senyurt H, Krauspe R. Epidemiology of adolescent idiopathic scoliosis. J Child Orthop. 2012;7(1):3-9.
2. Koumbourlis AC. Scoliosis and the respiratory system. Paediatric respiratory reviews. 2006 Jun 1;7(2):152-60.
3. Tsiligiannis T, Grivas T. Pulmonary function in children with idiopathic scoliosis. Scoliosis. 2012 Dec;7(1):7.
4. Grauers A, Einarsdottir E, Gerdhem P. Genetics and pathogenesis of idiopathic scoliosis. Scoliosis and spinal disorders. 2016 Dec;11(1):45.
5. Lenke LG. Pulmonary and chest cage physiology. In: Spinal deformities. The comprehensive text. New York, NY: Thieme. 2003:126-34.
6. Bowen RM. Respiratory management in scoliosis. In: Moe JH, Bradford DS, Eds., Moe’stextbookofscoliosis and other spinal deformities. Philadelphia: Saunders. p 572.
7. Johnston CE, Richards BS, Sucato DJ, et al. Correlation of preoperative deformity magnitude and pulmonary function tests in adolescent idiopathic scoliosis. Spine. 2011; 36, 1096-1102.
8. Loder RT, Urquhart A, Steen H, et al. Variability in Cobb angle measurements in children with congenital scoliosis. The Journal of bone and joint surgery. British volume. 1995 Sep;77(5):768-70.
9. Praud JP, Canet E. Chest wall function and dysfunction. In: Kendig’s Disorders of the Respiratory Tract in Children (Seventh Edition) 2006. p 733-746.
10. Mehta M. The rib-vertebra angle in the early diagnosis between resolving and progressive infantile scoliosis. The Journal of bone and joint surgery. 1972. 54, 230-243.
11. Rimmer KP, Ford GT, Whitelaw WA. Interaction between postural and respiratory control of human intercostal muscles. Journal of Applied Physiology. 1995 Nov 1;79(5):1556-61.
12. Upadhyay SS, Mullaji AB, Luk KD, Leong JC. Relation of spinal and thoracic cage deformities and their flexibilities with altered pulmonary functions in adolescent idiopathic scoliosis. Spine. 1995 Nov;20(22):2415- 20.
13. Canavese F, Turcot K, Holveck J, Farhoumand AD, Kaelin A. Changes of concave and convex rib–vertebral angle, angle difference and angle ratio in patients with right thoracic adolescent idiopathic scoliosis. European Spine Journal. 2011 Jan 1;20(1):129-34.
14. Ferreira JH, de Janeiro R, James JI. Progressive and resolving infantile idiopathic scoliosis: the differential diagnosis. The Journal of bone and joint surgery. British volume. 1972 Nov;54(4):648-55.
15. Kristmundsdottir F, Burwell RG, James JI. The rib-vertebra angles on the convexity and concavity of the spinal curve in infantile idiopathic scoliosis. Clinical orthopaedics and related research. 1985 Dec(201):205-9.
16. Burwell RG, Cole AA, Cook TA, et al. Pathogenesis of idiopathic scoliosis. The Nottingham concept. Acta OrthopaedicaBelgica. 1992;58:33-58.
17. Xiong B, Sevastik JA, Hedlund R, Sevastik B. Radiographic changes at the coronal plane in early scoliosis. Spine. 1994 Jan;19(2):159-64.
18. Sevastik B, Xiong B, Sevastik J, Lindgren U, Willers U. Rib-vertebral angle asymmetry in idiopathic, neuromuscular and experimentally induced scoliosis. European Spine Journal. 1997 Mar 1;6(2):84-8.
19. Modi HN, Suh SW, Song HR, Yang JH, Ting C, Hazra S. Drooping of apical convex rib-vertebral angle in adolescent idiopathic scoliosis of more than 40 degrees: a prognostic factor for progression. Clinical Spine Surgery.
2009 Jul 1;22(5):367-71.
20. Widmann RF, Bitan FD, Laplaza FJ, Burke SW, DiMaio MF, Schneider R. Spinal deformity, pulmonary compromise, and quality of life in osteogenesis imperfecta. Spine. 1999 Aug 15;24(16):1673.
21. Newton PO, Faro FD, Gollogly S, Betz RR, Lenke LG, Lowe TG. Results of preoperative pulmonary function testing of adolescents with idiopathic scoliosis: a study of six hundred and thirty-one patients. JBJS. 2005 Sep 1;87(9):1937-46.
22. Boyer J, Amin N, Taddonio R, Dozor AJ. Evidence of airway obstruction in children with idiopathic scoliosis. Chest. 1996 Jun 1;109(6):1532-5.
23. Farrell J, Garrido E. Effect of idiopathic thoracic scoliosis on the tracheobronchial tree. BMJ open respiratory research. 2018 Mar 1;5(1):e000264.
24. Kearon C, Killian J. Factors Determining Pulmonary Function in Adolescent Idiopathic Thoracic Scoliosis. American Journal of Respiratory and Critical Care Medicine. 1993;148:288-94.
25. Pehrsson K, Danielsson A, Nachemson A. Pulmonary function in adolescent idiopathic scoliosis: a 25 year follow up after surgery or start of brace treatment. Thorax. 2001 May 1;56(5):388-93.
26. Lenke LG, Bridwell KH, Baldus C, Blanke K. Analysis of pulmonary function and axis rotation in adolescent and young adult idiopathic scoliosis patients treated with Cotrel-Dubousset instrumentation. Journal of spinal disorders. 1992 Mar;5(1):16-25.
27. Vedantam R, Lenke LG, Bridwell KH, Haas J, Linville DA. A prospective evaluation of pulmonary function in patients with adolescent idiopathic scoliosis relative to the surgical approach used for spinal arthrodesis. Spine.
2000 Jan 1;25(1):82.
28. Lenke LG, Bridwell KH, Blanke K, Baldus C. Analysis of pulmonary function and chest cage dimension changes after thoracoplasty in idiopathic scoliosis. Spine. 1995 Jun;20(12):1343-50.


How to Cite this Article: McKee C J S Assessment in adolescent | scoliosis | International Journal of
Paediatric Orthopaedics | Jan-April 2020; 6(1):- .

(Abstract)      (Full Text HTML)      (Download PDF)