Diagnosis of Pediatric Musculoskeletal Infections: Current Concepts Review

Volume 8 | Issue 1 | January-April 2022 | Page: 14-23 | Neeraj Vij, Jessica Burns, Melissa Esparza, Alexandra Dominianni, Yerin Cho, Mohan V Belthur


Authors: Neeraj Vij BS [1], Jessica Burns MD [2], Melissa Esparza MD [2], Alexandra Dominianni BA [1], Yerin Cho BS [1], Mohan V Belthur MD [1, 2]

[1] Department of Child Health & Orthopaedics, University of Arizona, College of Medicine, Phoenix, Arizona, USA.
[2] Department of Orthopedics, Phoenix Children’s Hospital, Phoenix, Arizona, USA.

Address of Correspondence
Dr. Mohan V. Belthur,
Department of Child Health & Orthopaedics, University of Arizona, College of Medicine, Phoenix, Arizona, USA. Department of Orthopedics, Phoenix Children’s Hospital, Phoenix, Arizona, USA.


Introduction: Pediatric musculoskeletal infections are common and constitute one of the top five conditions contributing to the burden of musculoskeletal disease in childhood. With early accurate diagnosis and appropriate treatment, the clinical course, and outcomes of musculoskeletal infections can be favorable. However, poor outcomes (morbidity/mortality), a wide spectrum of post-infective sequela and significant functional impairment can occur, especially in the setting of delayed diagnosis and inadequate treatment. The purpose of this narrative review is to provide an overview of the standard diagnostic modalities with an emphasis on the recent literature and to summarize the current state of knowledge on the newer diagnostic modalities of the 21rst century.
Materials and Methods: A literature search was performed using the following keywords: “diagnosis”, OR “diagnostic modalities”, OR “diagnostic capability” AND “children” OR “pediatric” AND “musculoskeletal” OR “bony” OR “orthopedic” OR “muscular” AND “infection” OR “bacterial” OR “viral” OR “fungal”. Databases searched included PubMed, EMBASE, Cochrane Library, and SCOPUS. This returned a total of 315 articles. English language articles published between January 1990 and March 2022 regarding traditional or newer diagnostic modalities and pediatric musculoskeletal infection were included in this review.
Results: A total of 62 articles met the inclusion criteria. Our knowledge base regarding the traditional diagnostic modalities has evolved to include several scoring systems with good sensitivities and specificities. Cellular acute phase reactants show promise in the recent literature. There is good literature regarding the evolution of imaging techniques to improve diagnosis. Novel diagnostic modalities in the recent literature include plasma-based acute phase reactants, polymerase chain reaction, and next-generation sequencing.
Conclusion: Continuing to improve our diagnostic accuracy of Pediatric MSKIs can help decrease the worldwide burden of these conditions. As the use of adjunctive biomarkers becomes more common, diagnoses and pathogen identification could be made timelier and antibiotic choices could be individualized leading to improved outcomes. Limited sequence imaging techniques can reduce the associated costs. Polymerase chain reaction and next generation sequencing are important novel technologies that can revolutionize the diagnosis of pediatric musculoskeletal infection.
Keywords:  Paediatric, Musculoskeletal infection, Diagnosis.


1. Schwend RM. The Burden of Pediatric Musculoskeletal Diseases Worldwide. Orthop Clin North Am. 2020;51(2). doi:10.1016/j.ocl.2019.11.005
2. Ilharreborde B. Sequelae of pediatric osteoarticular infection. Orthop Traumatol Surg Res. 2015;101(1). doi:10.1016/j.otsr.2014.07.029
3. Alhinai Z, Elahi M, Park S, et al. Prediction of Adverse Outcomes in Pediatric Acute Hematogenous Osteomyelitis. Clin Infect Dis. 2020;72(9):454-464. doi:10.1093/cid/ciaa211
4. Belthur M V., Birchansky SB, Verdugo AA, et al. Pathologic fractures in children with acute Staphylococcus aureus osteomyelitis. J Bone Jt Surg – Ser A. 2012;94(1). doi:10.2106/JBJS.J.01915
5. Belthur M V., Esparza M, Fernandes JA, Chaudhary MM. Post Infective Deformities: Strategies for Limb Reconstruction. In: Pediatric Musculoskeletal Infections. ; 2022.
6. Furman MS, Restrepo R, Kritsaneepaiboon S, Laya BF, Plut D, Lee EY. Updates and Advances: Pediatric Musculoskeletal Infection Imaging Made Easier for Radiologists and Clinicians. Semin Musculoskelet Radiol. 2021;25(1). doi:10.1055/s-0041-1723004
7. Arkader A, Brusalis C, Warner WC, Conway JH, Noonan K. Update in Pediatric Musculoskeletal Infections: When It Is, When It Isn’t, and What to Do. J Am Acad Orthop Surg. Published online 2016. doi:10.5435/JAAOS-D-15-00714
8. Funk SS, Copley LAB. Acute Hematogenous Osteomyelitis in Children: Pathogenesis, Diagnosis, and Treatment. Orthop Clin North Am. 2017;48(2):199-208. doi:10.1016/j.ocl.2016.12.007
9. Vij N, Ranade AS, Kang P, Belthur M V. Primary Bacterial Pyomyositis in Children: A Systematic Review. J Pediatr Orthop. 2021;41(9). doi:10.1097/BPO.0000000000001944
10. Paakkonen M, Kallio MJT, Kallio PE, Peltola H. Sensitivity of erythrocyte sedimentation rate and C-reactive protein in childhood bone and joint infections. Clin Orthop Relat Res. 2010;468(3). doi:10.1007/s11999-009-0936-1
11. Levine MJ, McGuire KJ, McGowan KL, Flynn JM. Assessment of the test characteristics of C-reactive protein for septic arthritis in children. J Pediatr Orthop. 2003;23(3). doi:10.1097/00004694-200305000-00018
12. McMichael BS, Nickel AJ, Christensen EW, et al. Discriminative Accuracy of Procalcitonin and Traditional Biomarkers in Pediatric Acute Musculoskeletal Infection. Pediatr Emerg Care. 2021;37(12). doi:10.1097/pec.0000000000001978
13. Amaro E, Marvi TK, Posey SL, et al. C-Reactive protein predicts risk of venous thromboembolism in pediatric musculoskeletal infection. J Pediatr Orthop. 2019;39(1). doi:10.1097/BPO.0000000000001256
14. Woods CR, Bradley JS, Chatterjee A, et al. Clinical Practice Guideline by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America: 2021 Guideline on Diagnosis and Management of Acute Hematogenous Osteomyelitis in Pediatrics. J Pediatric Infect Dis Soc. 2021;10(8):801-844. doi:10.1093/jpids/piab027
15. Kocher MS, Mandiga R, Zurakowski D, Barnewolt C, Kasser JR. Validation of a clinical prediction rule for the differentiation between septic arthritis and transient synovitis of the hip in children. J Bone Jt Surg – Ser A. 2004;86(8). doi:10.2106/00004623-200408000-00005
16. Athey AG, Mignemi ME, Gheen WT, Lindsay EA, Jo CH, Copley LA. Validation and Modification of a Severity of Illness Score for Children with Acute Hematogenous Osteomyelitis. J Pediatr Orthop. 2019;39(2):90-97. doi:10.1097/BPO.0000000000000879
17. Welling BD, Haruno LS, Rosenfeld SB. Validating an algorithm to predict adjacent musculoskeletal infections in pediatric patients with septic arthritis. Clin Orthop Relat Res. 2018;476(1). doi:10.1007/s11999.0000000000000019
18. Stephanie N. Moore-Lotridge, PhD; Breanne H.Y. Gibson, BS; Matthew T. Duvernay, PhD; Jeffrey E. Martus MD; Isaac P. Thomsen MD, MSCI; Jonathan G. Schoenecker, MD P. Pediatric Musculoskeletal Infection – An Update Through the Four Pillars of Clinical Care and Immunothrombotic Similarities With COVID-19. JPOSNA. 2020;2(2):Online Only. Accessed 09/14/2021.
19. Arnold JC, Cannavino CR, Ross MK, et al. Acute bacterial osteoarticular infections: Eight-year analysis of C-reactive protein for oral step-down therapy. Pediatrics. 2012;130(4). doi:10.1542/peds.2012-0220
20. Roine I, Faingezicht I, Arguedas A, Herrera JF, Rodríguez F. Serial serum C–reactive protein to monitor recovery from acute hematogenous osteomyelitis in children. Pediatr Infect Dis J. 1995;14(1). doi:10.1097/00006454-199501000-00008
21. Chou ACC, Mahadev A. The use of c-Reactive protein as a guide for transitioning to oral antibiotics in pediatric osteoarticular infections. J Pediatr Orthop. 2016;36(2). doi:10.1097/BPO.0000000000000427
22. Kallio MJT, Unkila-Kallio L, Aalto K, Peltola H. Serum C-reactive protein, erythrocyte sedimentation rate and white blood cell count in septic arthritis of children. Pediatr Infect Dis J. 1997;16(4). doi:10.1097/00006454-199704000-00015
23. Roine I, Arguedas A, Faingezicht I, Rodriguez F. Early detection of sequela-prone osteomyelitis in children with use of simple clinical and laboratory criteria. Clin Infect Dis. 1997;24(5). doi:10.1093/clinids/24.5.849
24. Martin AC, Anderson D, Lucey J, et al. Predictors of outcome in pediatric osteomyelitis: Five years experience in a single tertiary center. Pediatr Infect Dis J. 2016;35(4). doi:10.1097/INF.0000000000001031
25. Ceroni D, Cherkaoui A, Ferey S, Kaelin A, Schrenzel J. Kingella kingae osteoarticular infections in young children: Clinical features and contribution of a new specific real-time PCR assay to the diagnosis. J Pediatr Orthop. 2010;30(3). doi:10.1097/BPO.0b013e3181d4732f
26. Ju KL, Zurakowski D, Kocher MS. Differentiating between methicillin-resistant and methicillin-sensitive Staphylococcus aureus osteomyelitis in children: An evidence-based clinical prediction algorithm. J Bone Jt Surg – Ser A. 2011;93(18). doi:10.2106/JBJS.J.01154
27. Martínez-Aguilar G, Avalos-Mishaan A, Hulten K, Hammerman W, Mason EO, Kaplan SL. Community-acquired, methicillin-resistant and methicillin-susceptible Staphylococcus aureus musculoskeletal infections in children. Pediatr Infect Dis J. 2004;23(8). doi:10.1097/01.inf.0000133044.79130.2a
28. Burdette SD, Watkins RR, Wong KK, Mathew SD, Martin DJ, Markert RJ. Staphylococcus aureus pyomyositis compared with non-Staphylococcus aureus pyomyositis. J Infect. 2012;64(5). doi:10.1016/j.jinf.2012.01.005
29. Arnold SR, Elias D, Buckingham SC, et al. Changing patterns of acute hematogenous osteomyelitis and septic arthritis: Emergence of community-associated methicillin-resistant Staphylococcus aureus. J Pediatr Orthop. Published online 2006. doi:10.1097/01.bpo.0000242431.91489.b4
30. Rosenfeld S, Bernstein DT, Daram S, Dawson J, Zhang W. Predicting the presence of adjacent infections in septic arthritis in children. J Pediatr Orthop. 2016;36(1). doi:10.1097/BPO.0000000000000389
31. Katz SE, Crook J, McHenry R, Szeles A, Halasa N, Banerjee R. Prospective Observational Study to Determine Kinetics of Procalcitonin in Hospitalized Children Receiving Antibiotic Therapy for Non-Critical Acute Bacterial Infections. Infect Dis Ther. 2021;10(1). doi:10.1007/s40121-020-00358-7
32. Yu BZ, Fu J, Chai W, Hao LB, Chen JY. Neutrophil to lymphocyte ratio as a predictor for diagnosis of early Periprosthetic joint infection. BMC Musculoskelet Disord. 2020;21(1). doi:10.1186/s12891-020-03704-5
33. Kozak BM, Jaimes C, Kirsch J, Gee MS. Mri techniques to decrease imaging times in children. Radiographics. 2020;40(2). doi:10.1148/rg.2020190112
34. Copley LAB. Recent advances in the evaluation and treatment of pediatric musculoskeletal infection. Curr Orthop Pract. 2013;24(6). doi:10.1097/BCO.0000000000000037
35. Benvenuti MA, An TJ, Mignemi ME, Martus JE, Thomsen IP, Schoenecker JG. Effects of Antibiotic Timing on Culture Results and Clinical Outcomes in Pediatric Musculoskeletal Infection. J Pediatr Orthop. 2019;39(3):158-162. doi:10.1097/BPO.0000000000000884
36. Brolin TJ, Hackett DJ, Abboud JA, Hsu JE, Namdari S. Routine cultures for seemingly aseptic revision shoulder arthroplasty: are they necessary? J Shoulder Elb Surg. 2017;26(11). doi:10.1016/j.jse.2017.07.006
37. Lyon RM, Evanich JD. Culture-negative septic arthritis in children. J Pediatr Orthop. 1999;19(5). doi:10.1097/01241398-199909000-00020
38. Ilharreborde B, Bidet P, Lorrot M, et al. New real-time PCR-based method for Kingella kingae DNA detection: Application to samples collected from 89 children with acute arthritis. J Clin Microbiol. 2009;47(6). doi:10.1128/JCM.00144-09
39. Vij N, Singleton I, Kang P, Esparza M, Burns J, Belthur M V. Clinical Scores Predict Acute and Chronic Complications in Pediatric Osteomyelitis: An External Validation. J Pediatr Orthop. Published online 2022. doi:0.1097/BPO.0000000000002159
40. Russell CD, Ramaesh R, Kalima P, Murray A, Gaston MS. Microbiological characteristics of acute osteoarticular infections in Children. J Med Microbiol. 2015;64(4). doi:10.1099/jmm.0.000026
41. Schoenecker JG. Defining the volume of consultations for musculoskeletal infection encountered by pediatric orthopaedic services in the United States. PLoS One. 2020;15(6). doi:10.1371/journal.pone.0234055
42. Chen MF, Chang CH, Yang LY, et al. Synovial fluid interleukin-16, interleukin-18, and cReLD2 as novel biomarkers of prosthetic joint infections. Bone Jt Res. 2019;8(4). doi:10.1302/2046-3758.84.BJR-2018-0291.R1
43. Lee YS, Koo KH, Kim HJ, et al. Synovial fluid biomarkers for the diagnosis of periprosthetic joint infection : A systematic review and meta-Analysis. J Bone Jt Surg – Am Vol. 2017;99(24). doi:10.2106/JBJS.17.00123
44. Deirmengian C, Kardos K, Kilmartin P, Cameron A, Schiller K, Parvizi J. Diagnosing Periprosthetic Joint Infection: Has the Era of the Biomarker Arrived? Clin Orthop Relat Res. 2014;472(11). doi:10.1007/s11999-014-3543-8
45. Oppenheim JJ, Biragyn A, Kwak LW, Yang D. Roles of antimicrobial peptides such as defensins in innate and adaptive immunity. In: Annals of the Rheumatic Diseases. Vol 62. ; 2003. doi:10.1136/ard.62.suppl_2.ii17
46. Li Z, Li C, Wang G, et al. Diagnostic accuracy of synovial fluid D-lactate for periprosthetic joint infection: a systematic review and meta-analysis. J Orthop Surg Res. 2021;16(1). doi:10.1186/s13018-021-02778-8
47. Deirmengian C, Kardos K, Kilmartin P, Cameron A, Schiller K, Parvizi J. Combined measurement of synovial fluid a-defensin and C-reactive protein levels: Highly accurate for diagnosing periprosthetic joint infection. J Bone Jt Surg – Am Vol. 2014;96(17). doi:10.2106/JBJS.M.01316
48. Al-Qwbani M, Jiang N, Yu B. Kingella kingae-Associated Pediatric Osteoarticular Infections: An Overview of 566 Reported Cases. Clin Pediatr (Phila). 2016;55(14). doi:10.1177/0009922816629620
49. Gan C, Hu J, Cao Q, et al. Rapid identification of pathogens involved in pediatric osteoarticular infections by multiplex PCR. Ann Transl Med. 2020;8(5). doi:10.21037/atm.2020.01.34
50. Ramchandar N, Burns J, Coufal NG, et al. Use of Metagenomic Next-Generation Sequencing to Identify Pathogens in Pediatric Osteoarticular Infections. Open Forum Infect Dis. 2021;8(7). doi:10.1093/ofid/ofab346
51. Kadri K. Polymerase Chaiin Reaction (PCR): Principle and Applications. Intech. Published online 2019.
52. Shah NJ. Polymerase chain reaction. In: Introduction to Basics of Pharmacology and Toxicology: Volume 1: General and Molecular Pharmacology: Principles of Drug Action. ; 2019. doi:10.1007/978-981-32-9779-1_31
53. Kanno A, Sato T, Mitoma M, Murakami K. A method for sex identification in asparagus using DNA from seeds. Euphytica. 2017;213(9). doi:10.1007/s10681-017-2017-y
54. Held MFG, Hoppe S, Laubscher M, et al. Epidemiology of musculoskeletal tuberculosis in an area with high disease prevalence. Asian Spine J. 2017;11(3). doi:10.4184/asj.2017.11.3.405
55. Williams N, Cooper C, Cundy P. Kingella kingae septic arthritis in children: Recognising an elusive pathogen. J Child Orthop. 2014;8(1). doi:10.1007/s11832-014-0549-4
56. Awwad E, Tolley M, Antoniou G, Williams N. Clinical presentations of Kingella kingae musculoskeletal infections in South Australian children. J Paediatr Child Health. 2021;57(8). doi:10.1111/jpc.15422
57. Wong M, Williams N, Cooper C. <p>Systematic Review of <em>Kingella kingae</em> Musculoskeletal Infection in Children: Epidemiology, Impact and Management Strategies</p>. Pediatr Heal Med Ther. 2020;Volume 11. doi:10.2147/phmt.s217475
58. Drovandi L, Trapani S, Richichi S, Lasagni D, Resti M. Primary Pyomyositis as Unusual Cause of Limp: Three Cases in Immunocompetent Children and Literature Review. J Pediatr Infect Dis. 2018;13(3). doi:10.1055/s-0037-1604036
59. Juchler C, Spyropoulou V, Wagner N, et al. The Contemporary Bacteriologic Epidemiology of Osteoarticular Infections in Children in Switzerland. J Pediatr. 2018;194. doi:10.1016/j.jpeds.2017.11.025
60. Ceroni D, Dayer R, Steiger C. Are we approaching the end of pediatric culture-negative osteoarticular infections? Future Microbiol. 2019;14(11). doi:10.2217/fmb-2019-0141
61. Wood JB, Sesler C, Stalons D, et al. Performance of TEM-PCR vs culture for bacterial identification in pediatric musculoskeletal infections. Open Forum Infect Dis. 2018;5(6). doi:10.1093/ofid/ofy119
62. Dong L, Wang W, Li A, et al. Clinical Next Generation Sequencing for Precision Medicine in Cancer. Curr Genomics. 2015;16(4). doi:10.2174/1389202915666150511205313
63. Borate U, Absher D, Erba HP, Pasche B. Potential of whole-genome sequencing for determining risk and personalizing therapy: focus on AML. Expert Rev Anticancer Ther. 2012;12(10). doi:10.1586/era.12.116
64. Alekseyev YO, Fazeli R, Yang S, et al. A next-generation sequencing primer—how does it work and what can it do? Acad Pathol. 2018;5. doi:10.1177/2374289518766521
65. Roper PM, Eichelberger KR, Cox L, et al. Contemporary clinical isolates of Staphylococcus aureus from pediatric osteomyelitis patients display unique characteristics in a mouse model of hematogenous osteomyelitis. Infect Immun. 2021;89(10). doi:10.1128/IAI.00180-21
66. Pasche B, Absher D. Whole-Genome sequencing: A step closer to personalized medicine. JAMA – J Am Med Assoc. 2011;305(15). doi:10.1001/jama.2011.484
67. Stenson PD, Mort M, Ball E V., Shaw K, Phillips AD, Cooper DN. The Human Gene Mutation Database: Building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet. 2014;133(1). doi:10.1007/s00439-013-1358-4
68. Michalowitz A, Yang J, Castaneda P, Litrenta J. Existing and emerging methods of diagnosis and monitoring of pediatric musculoskeletal infection. Injury. 2020;51(10). doi:10.1016/j.injury.2020.06.020
69. Rossen JWA, Friedrich AW, Moran-Gilad J. Practical issues in implementing whole-genome-sequencing in routine diagnostic microbiology. Clin Microbiol Infect. 2018;24(4). doi:10.1016/j.cmi.2017.11.001
70. Schwarze K, Buchanan J, Taylor JC, Wordsworth S. Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet Med. 2018;20(10). doi:10.1038/gim.2017.247
71. Song Z, Lillehaugen T, Wallace J. Out-of-Network Laboratory Test Spending, Utilization, and Prices in the US. JAMA – J Am Med Assoc. 2021;325(16). doi:10.1001/jama.2021.0720
72. Health H. How much does an ultrasound cost?
73. New Choice Health. How much does a CT scan cost?
74. Vaishya R, Sardana R, Butta H, Mendiratta L. Laboratory diagnosis of Prosthetic Joint Infections: Current concepts and present status. J Clin Orthop Trauma. 2019;10(3). doi:10.1016/j.jcot.2018.10.006

How to Cite this Article:  Vij N, Burns J, Esparza M, Dominianni A, Cho Y, Belthur MV | Septic Arthritis Management: Current Guidelines | International Journal of Paediatric Orthopaedics | January-April 2022; 8(1): 14-23.

(Article Text HTML)      (Full Text PDF)

ABCD of Lateral Condyle Humerus Fracture in Children: Anatomy, Biomechanics, Classification and Diagnosis

Volume 7 | Issue 2 | May-August 2021 | Page: 24-29 | Taral V Nagda, Avi Shah, Dhwanil Tada

Authors: Taral V Nagda [1], Avi Shah [1], Dhwanil Tada [1]

[1] Department of Orthopaedics, SRCC NH Childrens Hospital, Mumbai, Maharashtra, India

Address of Correspondence
Dr. Taral Nagda,
Consultant Paediatric Orthopaedic Surgeon, SRCC NH Children’s Hospital, Mumbai, Maharashtra, India.


The lateral condyle fractures which form less than 20% of paediatric elbow fractures are seen at average 6 years age and have less severity of signs and symptoms which may lead to delayed diagnosis. Internal rotation view of X-ray of elbow is important in addition to standard AP and Lateral views. Jakob, Weiss and Song are commonly used classification systems in decision making.

Keywords: Lateral condyle fracture, Children, Classification, Anatomy, Diagnosis.

Further Reading

1. Abzug JM, Dua K, Kozin SH, Herman MJ. Current concepts in the treatment of lateral condyle fractures in children. JAAOS-Journal of the American Academy of Orthopaedic Surgeons. 2020 Jan 1;28(1):e9-19.
2. Baker M, Borland M. Range of elbow movement as a predictor of bony injury in children. Emergency Medicine Journal. 2011 Aug 1;28(8):666-9.
3. Finnbogason T, Karlsson G, Lindberg L, Mortensson W. Nondisplaced and minimally displaced fractures of the lateral humeral condyle in children: a prospective radiographic investigation of fracture stability. J Pediatr Orthop. 1995;15:422–5.
4. Flynn JC, Richards JF, Saltzman RI. Prevention and treatment of non-union of slightly displaced fractures of the lateral humeral condyle in children. An end-result study. J Bone Jt Surg Am.1975;57:1087–92.
5. Herman MJ, Boardman MJ, Hoover JR, Chafetz RS. Relationship of the anterior humeral line to the capitellar ossific nucleus: variability with age. JBJS. 2009 Sep 1;91(9):2188-93
6. Houshian S, Mehdi B, Larsen MS. The epidemiology of elbow fracture in children: analysis of 355 fractures, with special reference to supracondylar humerus fractures. J Orthop Sci. 2001;6:312–5. https :// 61006 0312.
7. Jakob R, Fowles JV, Rang M, Kassab MT. Observations concerning fractures of the lateral humeral condyle in children. J Bone Jt Surg Br. 1975;57:430–6.
8. Landin LA, Danielsson LG. Elbow fractures in children. Anepidemiological analysis of 589 cases. Acta Orthop Scand. 1986;57:309–12.
9. Pressmar J, Weber B, Kalbitz M. Different classifications concerning fractures of the lateral humeral condyle in children. European Journal of Trauma and Emergency Surgery. 2020 Apr 23:1-7.
10. Ramo BA, Funk SS, Elliott ME, Jo CH. The Song classification is reliable and guides prognosis and treatment for pediatric lateral condyle fractures: an independent validation study with treatment algorithm. Journal of Pediatric Orthopaedics. 2020 Mar 1;40(3):e203-9.
11. Schroeder K, Gilbert S, Ellington M, Souder C, Yang S. Pediatric Lateral Humeral Condyle Fractures. JPOSNA. 2020 May 3;2(1).
12. Song KS, Kang CH, Min BW, Bae KC, Cho CH, Lee JH. Closed reduction and internal fixation of displaced unstable lateral condylar fractures of the humerus in children. JBJS. 2008 Dec 1;90(12):2673-81.
13. Song KS, Kang CH, Min BW, Bae KC, Cho CH. Internal oblique radiographs for diagnosis of nondisplaced or minimally displaced lateral condylar fractures of the humerus in children. JBJS. 2007 Jan 1;89(1):58-63.
14. Song KS, Waters PM. Lateral condylar humerus fractures: which ones should we fix? Journal of Pediatric Orthopaedics. 2012 Jun 1;32:S5-9.
15. Tan SH, Dartnell J, Lim AK, Hui JH. Paediatric lateral condyle fractures: a systematic review. Archives of Orthopaedic and Trauma Surgery. 2018 Jun 1;138(6):809-17.
16. Tan SHS, Dartnell J, Lim AKS, Hui JH. Paediatric lateral condyle fractures: A systematic review. Arch Orthop Trauma Surg. 2018;138(6):809–17.
17. Weiss JM, Graves S, Yang S, Mendelsohn E, Kay RM, Skaggs DL. A new classification system predictive of complications in surgically treated pediatric humeral lateral condyle fractures. J Pediar Orthop. 2009 Sep 1;29(6):602-5.



How to Cite this Article:  Nagda TV, Shah A, Tada D | ABCD of Lateral Condyle Humerus Fracture in Children: Anatomy, Biomechanics, Classification and Diagnosis | International Journal of Paediatric
Orthopaedics | May-August 2021; 7(2): 24-29.

(Article Text HTML)      (Download PDF)