Diagnosis of Pediatric Musculoskeletal Infections: Current Concepts Review

Volume 8 | Issue 1 | January-April 2022 | Page: 14-23 | Neeraj Vij, Jessica Burns, Melissa Esparza, Alexandra Dominianni, Yerin Cho, Mohan V Belthur

DOI-10.13107/ijpo.2022.v08i01.129


Authors: Neeraj Vij BS [1], Jessica Burns MD [2], Melissa Esparza MD [2], Alexandra Dominianni BA [1], Yerin Cho BS [1], Mohan V Belthur MD [1, 2]

[1] Department of Child Health & Orthopaedics, University of Arizona, College of Medicine, Phoenix, Arizona, USA.
[2] Department of Orthopedics, Phoenix Children’s Hospital, Phoenix, Arizona, USA.

Address of Correspondence
Dr. Mohan V. Belthur,
Department of Child Health & Orthopaedics, University of Arizona, College of Medicine, Phoenix, Arizona, USA. Department of Orthopedics, Phoenix Children’s Hospital, Phoenix, Arizona, USA.
E-mail: mbelthur@phoenixchildrens.com


Abstract

Introduction: Pediatric musculoskeletal infections are common and constitute one of the top five conditions contributing to the burden of musculoskeletal disease in childhood. With early accurate diagnosis and appropriate treatment, the clinical course, and outcomes of musculoskeletal infections can be favorable. However, poor outcomes (morbidity/mortality), a wide spectrum of post-infective sequela and significant functional impairment can occur, especially in the setting of delayed diagnosis and inadequate treatment. The purpose of this narrative review is to provide an overview of the standard diagnostic modalities with an emphasis on the recent literature and to summarize the current state of knowledge on the newer diagnostic modalities of the 21rst century.
Materials and Methods: A literature search was performed using the following keywords: “diagnosis”, OR “diagnostic modalities”, OR “diagnostic capability” AND “children” OR “pediatric” AND “musculoskeletal” OR “bony” OR “orthopedic” OR “muscular” AND “infection” OR “bacterial” OR “viral” OR “fungal”. Databases searched included PubMed, EMBASE, Cochrane Library, and SCOPUS. This returned a total of 315 articles. English language articles published between January 1990 and March 2022 regarding traditional or newer diagnostic modalities and pediatric musculoskeletal infection were included in this review.
Results: A total of 62 articles met the inclusion criteria. Our knowledge base regarding the traditional diagnostic modalities has evolved to include several scoring systems with good sensitivities and specificities. Cellular acute phase reactants show promise in the recent literature. There is good literature regarding the evolution of imaging techniques to improve diagnosis. Novel diagnostic modalities in the recent literature include plasma-based acute phase reactants, polymerase chain reaction, and next-generation sequencing.
Conclusion: Continuing to improve our diagnostic accuracy of Pediatric MSKIs can help decrease the worldwide burden of these conditions. As the use of adjunctive biomarkers becomes more common, diagnoses and pathogen identification could be made timelier and antibiotic choices could be individualized leading to improved outcomes. Limited sequence imaging techniques can reduce the associated costs. Polymerase chain reaction and next generation sequencing are important novel technologies that can revolutionize the diagnosis of pediatric musculoskeletal infection.
Keywords:  Paediatric, Musculoskeletal infection, Diagnosis.


References

1. Schwend RM. The Burden of Pediatric Musculoskeletal Diseases Worldwide. Orthop Clin North Am. 2020;51(2). doi:10.1016/j.ocl.2019.11.005
2. Ilharreborde B. Sequelae of pediatric osteoarticular infection. Orthop Traumatol Surg Res. 2015;101(1). doi:10.1016/j.otsr.2014.07.029
3. Alhinai Z, Elahi M, Park S, et al. Prediction of Adverse Outcomes in Pediatric Acute Hematogenous Osteomyelitis. Clin Infect Dis. 2020;72(9):454-464. doi:10.1093/cid/ciaa211
4. Belthur M V., Birchansky SB, Verdugo AA, et al. Pathologic fractures in children with acute Staphylococcus aureus osteomyelitis. J Bone Jt Surg – Ser A. 2012;94(1). doi:10.2106/JBJS.J.01915
5. Belthur M V., Esparza M, Fernandes JA, Chaudhary MM. Post Infective Deformities: Strategies for Limb Reconstruction. In: Pediatric Musculoskeletal Infections. ; 2022.
6. Furman MS, Restrepo R, Kritsaneepaiboon S, Laya BF, Plut D, Lee EY. Updates and Advances: Pediatric Musculoskeletal Infection Imaging Made Easier for Radiologists and Clinicians. Semin Musculoskelet Radiol. 2021;25(1). doi:10.1055/s-0041-1723004
7. Arkader A, Brusalis C, Warner WC, Conway JH, Noonan K. Update in Pediatric Musculoskeletal Infections: When It Is, When It Isn’t, and What to Do. J Am Acad Orthop Surg. Published online 2016. doi:10.5435/JAAOS-D-15-00714
8. Funk SS, Copley LAB. Acute Hematogenous Osteomyelitis in Children: Pathogenesis, Diagnosis, and Treatment. Orthop Clin North Am. 2017;48(2):199-208. doi:10.1016/j.ocl.2016.12.007
9. Vij N, Ranade AS, Kang P, Belthur M V. Primary Bacterial Pyomyositis in Children: A Systematic Review. J Pediatr Orthop. 2021;41(9). doi:10.1097/BPO.0000000000001944
10. Paakkonen M, Kallio MJT, Kallio PE, Peltola H. Sensitivity of erythrocyte sedimentation rate and C-reactive protein in childhood bone and joint infections. Clin Orthop Relat Res. 2010;468(3). doi:10.1007/s11999-009-0936-1
11. Levine MJ, McGuire KJ, McGowan KL, Flynn JM. Assessment of the test characteristics of C-reactive protein for septic arthritis in children. J Pediatr Orthop. 2003;23(3). doi:10.1097/00004694-200305000-00018
12. McMichael BS, Nickel AJ, Christensen EW, et al. Discriminative Accuracy of Procalcitonin and Traditional Biomarkers in Pediatric Acute Musculoskeletal Infection. Pediatr Emerg Care. 2021;37(12). doi:10.1097/pec.0000000000001978
13. Amaro E, Marvi TK, Posey SL, et al. C-Reactive protein predicts risk of venous thromboembolism in pediatric musculoskeletal infection. J Pediatr Orthop. 2019;39(1). doi:10.1097/BPO.0000000000001256
14. Woods CR, Bradley JS, Chatterjee A, et al. Clinical Practice Guideline by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America: 2021 Guideline on Diagnosis and Management of Acute Hematogenous Osteomyelitis in Pediatrics. J Pediatric Infect Dis Soc. 2021;10(8):801-844. doi:10.1093/jpids/piab027
15. Kocher MS, Mandiga R, Zurakowski D, Barnewolt C, Kasser JR. Validation of a clinical prediction rule for the differentiation between septic arthritis and transient synovitis of the hip in children. J Bone Jt Surg – Ser A. 2004;86(8). doi:10.2106/00004623-200408000-00005
16. Athey AG, Mignemi ME, Gheen WT, Lindsay EA, Jo CH, Copley LA. Validation and Modification of a Severity of Illness Score for Children with Acute Hematogenous Osteomyelitis. J Pediatr Orthop. 2019;39(2):90-97. doi:10.1097/BPO.0000000000000879
17. Welling BD, Haruno LS, Rosenfeld SB. Validating an algorithm to predict adjacent musculoskeletal infections in pediatric patients with septic arthritis. Clin Orthop Relat Res. 2018;476(1). doi:10.1007/s11999.0000000000000019
18. Stephanie N. Moore-Lotridge, PhD; Breanne H.Y. Gibson, BS; Matthew T. Duvernay, PhD; Jeffrey E. Martus MD; Isaac P. Thomsen MD, MSCI; Jonathan G. Schoenecker, MD P. Pediatric Musculoskeletal Infection – An Update Through the Four Pillars of Clinical Care and Immunothrombotic Similarities With COVID-19. JPOSNA. 2020;2(2):Online Only. Accessed 09/14/2021.
19. Arnold JC, Cannavino CR, Ross MK, et al. Acute bacterial osteoarticular infections: Eight-year analysis of C-reactive protein for oral step-down therapy. Pediatrics. 2012;130(4). doi:10.1542/peds.2012-0220
20. Roine I, Faingezicht I, Arguedas A, Herrera JF, Rodríguez F. Serial serum C–reactive protein to monitor recovery from acute hematogenous osteomyelitis in children. Pediatr Infect Dis J. 1995;14(1). doi:10.1097/00006454-199501000-00008
21. Chou ACC, Mahadev A. The use of c-Reactive protein as a guide for transitioning to oral antibiotics in pediatric osteoarticular infections. J Pediatr Orthop. 2016;36(2). doi:10.1097/BPO.0000000000000427
22. Kallio MJT, Unkila-Kallio L, Aalto K, Peltola H. Serum C-reactive protein, erythrocyte sedimentation rate and white blood cell count in septic arthritis of children. Pediatr Infect Dis J. 1997;16(4). doi:10.1097/00006454-199704000-00015
23. Roine I, Arguedas A, Faingezicht I, Rodriguez F. Early detection of sequela-prone osteomyelitis in children with use of simple clinical and laboratory criteria. Clin Infect Dis. 1997;24(5). doi:10.1093/clinids/24.5.849
24. Martin AC, Anderson D, Lucey J, et al. Predictors of outcome in pediatric osteomyelitis: Five years experience in a single tertiary center. Pediatr Infect Dis J. 2016;35(4). doi:10.1097/INF.0000000000001031
25. Ceroni D, Cherkaoui A, Ferey S, Kaelin A, Schrenzel J. Kingella kingae osteoarticular infections in young children: Clinical features and contribution of a new specific real-time PCR assay to the diagnosis. J Pediatr Orthop. 2010;30(3). doi:10.1097/BPO.0b013e3181d4732f
26. Ju KL, Zurakowski D, Kocher MS. Differentiating between methicillin-resistant and methicillin-sensitive Staphylococcus aureus osteomyelitis in children: An evidence-based clinical prediction algorithm. J Bone Jt Surg – Ser A. 2011;93(18). doi:10.2106/JBJS.J.01154
27. Martínez-Aguilar G, Avalos-Mishaan A, Hulten K, Hammerman W, Mason EO, Kaplan SL. Community-acquired, methicillin-resistant and methicillin-susceptible Staphylococcus aureus musculoskeletal infections in children. Pediatr Infect Dis J. 2004;23(8). doi:10.1097/01.inf.0000133044.79130.2a
28. Burdette SD, Watkins RR, Wong KK, Mathew SD, Martin DJ, Markert RJ. Staphylococcus aureus pyomyositis compared with non-Staphylococcus aureus pyomyositis. J Infect. 2012;64(5). doi:10.1016/j.jinf.2012.01.005
29. Arnold SR, Elias D, Buckingham SC, et al. Changing patterns of acute hematogenous osteomyelitis and septic arthritis: Emergence of community-associated methicillin-resistant Staphylococcus aureus. J Pediatr Orthop. Published online 2006. doi:10.1097/01.bpo.0000242431.91489.b4
30. Rosenfeld S, Bernstein DT, Daram S, Dawson J, Zhang W. Predicting the presence of adjacent infections in septic arthritis in children. J Pediatr Orthop. 2016;36(1). doi:10.1097/BPO.0000000000000389
31. Katz SE, Crook J, McHenry R, Szeles A, Halasa N, Banerjee R. Prospective Observational Study to Determine Kinetics of Procalcitonin in Hospitalized Children Receiving Antibiotic Therapy for Non-Critical Acute Bacterial Infections. Infect Dis Ther. 2021;10(1). doi:10.1007/s40121-020-00358-7
32. Yu BZ, Fu J, Chai W, Hao LB, Chen JY. Neutrophil to lymphocyte ratio as a predictor for diagnosis of early Periprosthetic joint infection. BMC Musculoskelet Disord. 2020;21(1). doi:10.1186/s12891-020-03704-5
33. Kozak BM, Jaimes C, Kirsch J, Gee MS. Mri techniques to decrease imaging times in children. Radiographics. 2020;40(2). doi:10.1148/rg.2020190112
34. Copley LAB. Recent advances in the evaluation and treatment of pediatric musculoskeletal infection. Curr Orthop Pract. 2013;24(6). doi:10.1097/BCO.0000000000000037
35. Benvenuti MA, An TJ, Mignemi ME, Martus JE, Thomsen IP, Schoenecker JG. Effects of Antibiotic Timing on Culture Results and Clinical Outcomes in Pediatric Musculoskeletal Infection. J Pediatr Orthop. 2019;39(3):158-162. doi:10.1097/BPO.0000000000000884
36. Brolin TJ, Hackett DJ, Abboud JA, Hsu JE, Namdari S. Routine cultures for seemingly aseptic revision shoulder arthroplasty: are they necessary? J Shoulder Elb Surg. 2017;26(11). doi:10.1016/j.jse.2017.07.006
37. Lyon RM, Evanich JD. Culture-negative septic arthritis in children. J Pediatr Orthop. 1999;19(5). doi:10.1097/01241398-199909000-00020
38. Ilharreborde B, Bidet P, Lorrot M, et al. New real-time PCR-based method for Kingella kingae DNA detection: Application to samples collected from 89 children with acute arthritis. J Clin Microbiol. 2009;47(6). doi:10.1128/JCM.00144-09
39. Vij N, Singleton I, Kang P, Esparza M, Burns J, Belthur M V. Clinical Scores Predict Acute and Chronic Complications in Pediatric Osteomyelitis: An External Validation. J Pediatr Orthop. Published online 2022. doi:0.1097/BPO.0000000000002159
40. Russell CD, Ramaesh R, Kalima P, Murray A, Gaston MS. Microbiological characteristics of acute osteoarticular infections in Children. J Med Microbiol. 2015;64(4). doi:10.1099/jmm.0.000026
41. Schoenecker JG. Defining the volume of consultations for musculoskeletal infection encountered by pediatric orthopaedic services in the United States. PLoS One. 2020;15(6). doi:10.1371/journal.pone.0234055
42. Chen MF, Chang CH, Yang LY, et al. Synovial fluid interleukin-16, interleukin-18, and cReLD2 as novel biomarkers of prosthetic joint infections. Bone Jt Res. 2019;8(4). doi:10.1302/2046-3758.84.BJR-2018-0291.R1
43. Lee YS, Koo KH, Kim HJ, et al. Synovial fluid biomarkers for the diagnosis of periprosthetic joint infection : A systematic review and meta-Analysis. J Bone Jt Surg – Am Vol. 2017;99(24). doi:10.2106/JBJS.17.00123
44. Deirmengian C, Kardos K, Kilmartin P, Cameron A, Schiller K, Parvizi J. Diagnosing Periprosthetic Joint Infection: Has the Era of the Biomarker Arrived? Clin Orthop Relat Res. 2014;472(11). doi:10.1007/s11999-014-3543-8
45. Oppenheim JJ, Biragyn A, Kwak LW, Yang D. Roles of antimicrobial peptides such as defensins in innate and adaptive immunity. In: Annals of the Rheumatic Diseases. Vol 62. ; 2003. doi:10.1136/ard.62.suppl_2.ii17
46. Li Z, Li C, Wang G, et al. Diagnostic accuracy of synovial fluid D-lactate for periprosthetic joint infection: a systematic review and meta-analysis. J Orthop Surg Res. 2021;16(1). doi:10.1186/s13018-021-02778-8
47. Deirmengian C, Kardos K, Kilmartin P, Cameron A, Schiller K, Parvizi J. Combined measurement of synovial fluid a-defensin and C-reactive protein levels: Highly accurate for diagnosing periprosthetic joint infection. J Bone Jt Surg – Am Vol. 2014;96(17). doi:10.2106/JBJS.M.01316
48. Al-Qwbani M, Jiang N, Yu B. Kingella kingae-Associated Pediatric Osteoarticular Infections: An Overview of 566 Reported Cases. Clin Pediatr (Phila). 2016;55(14). doi:10.1177/0009922816629620
49. Gan C, Hu J, Cao Q, et al. Rapid identification of pathogens involved in pediatric osteoarticular infections by multiplex PCR. Ann Transl Med. 2020;8(5). doi:10.21037/atm.2020.01.34
50. Ramchandar N, Burns J, Coufal NG, et al. Use of Metagenomic Next-Generation Sequencing to Identify Pathogens in Pediatric Osteoarticular Infections. Open Forum Infect Dis. 2021;8(7). doi:10.1093/ofid/ofab346
51. Kadri K. Polymerase Chaiin Reaction (PCR): Principle and Applications. Intech. Published online 2019.
52. Shah NJ. Polymerase chain reaction. In: Introduction to Basics of Pharmacology and Toxicology: Volume 1: General and Molecular Pharmacology: Principles of Drug Action. ; 2019. doi:10.1007/978-981-32-9779-1_31
53. Kanno A, Sato T, Mitoma M, Murakami K. A method for sex identification in asparagus using DNA from seeds. Euphytica. 2017;213(9). doi:10.1007/s10681-017-2017-y
54. Held MFG, Hoppe S, Laubscher M, et al. Epidemiology of musculoskeletal tuberculosis in an area with high disease prevalence. Asian Spine J. 2017;11(3). doi:10.4184/asj.2017.11.3.405
55. Williams N, Cooper C, Cundy P. Kingella kingae septic arthritis in children: Recognising an elusive pathogen. J Child Orthop. 2014;8(1). doi:10.1007/s11832-014-0549-4
56. Awwad E, Tolley M, Antoniou G, Williams N. Clinical presentations of Kingella kingae musculoskeletal infections in South Australian children. J Paediatr Child Health. 2021;57(8). doi:10.1111/jpc.15422
57. Wong M, Williams N, Cooper C. <p>Systematic Review of <em>Kingella kingae</em> Musculoskeletal Infection in Children: Epidemiology, Impact and Management Strategies</p>. Pediatr Heal Med Ther. 2020;Volume 11. doi:10.2147/phmt.s217475
58. Drovandi L, Trapani S, Richichi S, Lasagni D, Resti M. Primary Pyomyositis as Unusual Cause of Limp: Three Cases in Immunocompetent Children and Literature Review. J Pediatr Infect Dis. 2018;13(3). doi:10.1055/s-0037-1604036
59. Juchler C, Spyropoulou V, Wagner N, et al. The Contemporary Bacteriologic Epidemiology of Osteoarticular Infections in Children in Switzerland. J Pediatr. 2018;194. doi:10.1016/j.jpeds.2017.11.025
60. Ceroni D, Dayer R, Steiger C. Are we approaching the end of pediatric culture-negative osteoarticular infections? Future Microbiol. 2019;14(11). doi:10.2217/fmb-2019-0141
61. Wood JB, Sesler C, Stalons D, et al. Performance of TEM-PCR vs culture for bacterial identification in pediatric musculoskeletal infections. Open Forum Infect Dis. 2018;5(6). doi:10.1093/ofid/ofy119
62. Dong L, Wang W, Li A, et al. Clinical Next Generation Sequencing for Precision Medicine in Cancer. Curr Genomics. 2015;16(4). doi:10.2174/1389202915666150511205313
63. Borate U, Absher D, Erba HP, Pasche B. Potential of whole-genome sequencing for determining risk and personalizing therapy: focus on AML. Expert Rev Anticancer Ther. 2012;12(10). doi:10.1586/era.12.116
64. Alekseyev YO, Fazeli R, Yang S, et al. A next-generation sequencing primer—how does it work and what can it do? Acad Pathol. 2018;5. doi:10.1177/2374289518766521
65. Roper PM, Eichelberger KR, Cox L, et al. Contemporary clinical isolates of Staphylococcus aureus from pediatric osteomyelitis patients display unique characteristics in a mouse model of hematogenous osteomyelitis. Infect Immun. 2021;89(10). doi:10.1128/IAI.00180-21
66. Pasche B, Absher D. Whole-Genome sequencing: A step closer to personalized medicine. JAMA – J Am Med Assoc. 2011;305(15). doi:10.1001/jama.2011.484
67. Stenson PD, Mort M, Ball E V., Shaw K, Phillips AD, Cooper DN. The Human Gene Mutation Database: Building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet. 2014;133(1). doi:10.1007/s00439-013-1358-4
68. Michalowitz A, Yang J, Castaneda P, Litrenta J. Existing and emerging methods of diagnosis and monitoring of pediatric musculoskeletal infection. Injury. 2020;51(10). doi:10.1016/j.injury.2020.06.020
69. Rossen JWA, Friedrich AW, Moran-Gilad J. Practical issues in implementing whole-genome-sequencing in routine diagnostic microbiology. Clin Microbiol Infect. 2018;24(4). doi:10.1016/j.cmi.2017.11.001
70. Schwarze K, Buchanan J, Taylor JC, Wordsworth S. Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet Med. 2018;20(10). doi:10.1038/gim.2017.247
71. Song Z, Lillehaugen T, Wallace J. Out-of-Network Laboratory Test Spending, Utilization, and Prices in the US. JAMA – J Am Med Assoc. 2021;325(16). doi:10.1001/jama.2021.0720
72. Health H. How much does an ultrasound cost? https://www.honorhealth.com/patients-visitors/average-pricing/ultrasound-costs
73. New Choice Health. How much does a CT scan cost? https://www.newchoicehealth.com/ct-scan/cost
74. Vaishya R, Sardana R, Butta H, Mendiratta L. Laboratory diagnosis of Prosthetic Joint Infections: Current concepts and present status. J Clin Orthop Trauma. 2019;10(3). doi:10.1016/j.jcot.2018.10.006


How to Cite this Article:  Vij N, Burns J, Esparza M, Dominianni A, Cho Y, Belthur MV | Septic Arthritis Management: Current Guidelines | International Journal of Paediatric Orthopaedics | January-April 2022; 8(1): 14-23.

(Article Text HTML)      (Full Text PDF)


Septic Arthritis Management: Current Guidelines

Volume 8 | Issue 1 | January-April 2022 | Page: 08-13 | Gaurav Gupta, Easwar T. Ramani, Gaurav Garg, Maulin Shah
DOI-10.13107/ijpo.2022.v08i01.128


Authors: Gaurav Gupta MS Ortho. [1, 2], Easwar T. Ramani MS Ortho. [3, 4 ], Gaurav Garg MS Ortho. [5], Maulin Shah MS Ortho. [6]

[1] Department of Paediatric Orthopaedics, Asian Hospital, Faridabad, UP, India.
[2] Department of Orthopaedics, Child Ortho Clinic, Faridabad & Delhi, India.
[3] Department of Paediatric Orthopaedics, Baby Memorial Hospital, Kozhikode, Kerala, India.
[4] Department of Paediatric Orthopaedics and Spine Surgery, Palakkad District Cooperative & Research Centre, Palakkad, Kerala, India.
[5] Department of Paediatric Orthopaedics, Excelcare Hospital, Jaipur, India.
[6] Department of Paediatric Orthopaedics, Orthokid Clinic, Ahmedabad, Gujarat, India.

Address of Correspondence
Dr. Maulin Shah,
Consultant Paediatric Orthopaedic Surgeon, Orthokid Clinic, Ahmedabad, Gujarat, India.
E-mail: maulinmshah@gmail.com


Abstract

Septic arthritis is an orthopaedic emergency that is more commonly seen in infants and young children. Release of proteolytic enzymes leads to permanent destruction of intra-articular cartilage and subchondral bone as early as 72 hours after onset. Hip and knee are the most commonly involved joints. Staphylococcus aureus is the most common causative organism across all paediatric age groups. Recently, there is a significant increase in incidence of Klebsiella and Pseudomonas, especially in neonates. Sensitivity patterns of causative organisms are also changing with increasing resistance to empirical antibiotics, requiring the use of higher antibiotics.
The detection of septic arthritis in neonates is challenging. The physician has to rely on indirect signs and maintain a high index of suspicion. C-reactive protein (CRP) along with difficulty in weight bearing have a better predictive value in diagnosis. Ultrasonography (USG) is a useful tool for quick screening of a joint and to detect effusion. Many recent studies have suggested percutaneous drainage/aspiration as an equally effective modality to manage septic joints, thus avoiding the morbidity of open arthrotomy and the risks of general anaesthesia. Lack of response to minimally invasive methods warrant an open approach. Antero-lateral arthrotomy is preferred over the posterior approach to avoid iatrogenic damage to the blood supply of the femoral head. Arthroscopic lavage of the septic joint is also becoming popular. The choice of empiric antibiotic treatment should be based on age, vaccination status and underlying co-morbidities. There is growing evidence in literature for short-course intravenous (IV) therapy. Delayed diagnosis, sickle cell disease, and infection caused by certain strains of methicillin-resistant staphylococcus aureus (MRSA) are predispose to orthopaedic sequelae.
Keywords:  Septic Arthritis, Arthrotomy, Osteomyelitis.


References

1. Momodu II, Savaliya V. Septic Arthritis.In:StatPearls[Internet.Treasure Island(FL):StatPearlsPublishing;2022 https://www.ncbi.nlm.nih.gov/books/NBK538176/
2. Anil Agarwal, Aditya N. Aggarwal. Bone and Joint Infections in Children: Septic Arthritis. Indian J Pediatr 2015 July 21. DOI 10.1007/s12098-015-1816-1.
3. T. Sreenivas, A. R. Nataraj, Anand Kumar, Jagdish Menon. Neonatal septic arthritis in a tertiary care hospital: a descriptive study. Eur J Orthop Surg Traumatol 2016 May 6. DOI 10.1007/s00590-016-1776-9.
4. Gireesh Sankaran, Balaji Zacharia1, Antony Roy1, Sulaikha Puthan Purayil. Current clinical and bacteriological profile of septic arthritis in young infants: a prospective study from a tertiary referral centre. European Journal of Orthopaedic Surgery & Traumatology 2018 February 9. https://doi.org/10.1007/s00590-018-2142-x.
5. Rai A, Chakladar D, Bhowmik S, Mondal T, Nandy A, Maji B, et al. Neonatal septic arthritis: Indian perspective. Eur J Rheumatol 2020; 7(Suppl 1): S72-S77.
6. Agarwal A, Aggarwal AN. Septic arthritis in children. In: Agarwal A, Aggarwal AN, editors. Pediatric osteoarticular infections. Delhi: Jaypee; 2014. p. 60–74.
7. Giovanni Autore, Luca Bernardi, Susanna Esposito. Update on Acute Bone and Joint Infections in Paediatrics: A Narrative Review on the Most Recent Evidence-Based Recommendations and Appropriate Anti Infective Therapy. Antibiotics 2020, 9, 486; doi:10.3390/antibiotics9080486.
8. Sultan J, Hughes PJ. Septic arthritis or transient synovitis of the hip in children: the value of clinical prediction algorithms. J Bone Joint Surg Br. 2010;92(9):1289–1293.
9. Ju KL, Zurakowski D, Kocher MS. Differentiating between methicillin-resistant and methicillin-sensitive Staphylococcus aureus osteomyelitis in children: an evidence-based clinical prediction algorithm. J Bone Joint Surg Am. 2011;93(18):1693–1701
10. Yagupsky P, Dubnov-Raz G, Gené A, Ephros M, Israeli-Spanish Kin-gella kingae Research Group Differentiating Kingella kingae septic arthritis of the hip from transient synovitis in young children. J Pediatr. 2014;165(5):985–989.
11. Kocher MS, Mandiga R, Zurakowski D, Barnewolt C, Kasser JR. Validation of a clinical prediction rule for the differentiation between septic arthritis and transient synovitis of the hip in children. J Bone Joint Surg Am. 2004 Aug;86(8):1629-35. doi: 10.2106/00004623-200408000-00005. PMID: 15292409.
12. Pääkkönen M. Septic arthritis in children: diagnosis and treatment. Pediatric Health Med Ther. 2017;8:65-68. Published 2017 May 18. 10.2147/PHMT.S115429.
13. Singhal R, Perry DC, Khan FN, Cohen D, Stevenson HL, James LA, Sampath JS, Bruce CE. The use of CRP within a clinical prediction algorithm for the differentiation of septic arthritis and transient synovitis in children. J Bone Joint Surg Br. 2011 Nov;93(11):1556-61. doi: 10.1302/0301-620X.93B11.26857. PMID: 22058311.
14. Krogstad P. Osteomyelitis and septic arthritis. In: Feigin RD, Cherry JD, editors. Textbook of Pediatric Infectious Diseases. 6th ed. Philadelphia, PA: Saunders; 2009. pp. 725–748.
15. G. Fabry, E. Miere. Septic arthritis hip in children : poor results after late and inadequate treatment. JPO -A , 3: 461-466, 1983.
16. W A Herndon, S Knauer, J A Sullivan, R H Gross. Management of septic arthritis in children. J Pediatr Ortho, Sep-Oct 1986;6(5):576-8. doi: 10.1097/01241398-198609000-00009.
17. Uri Givon 1, Boaz Liberman, Amos Schindler, Alexander Blankstein, Abraham Ganel. Treatment of septic arthritis of the hip joint by repeated ultrasound-guided aspirations. J Pediatr Orthop May-Jun 2004;24(3):266-70. doi: 10.1097/00004694-200405000-00006.
18. Daniel M Weigl 1, Tali Becker, Eyal Mercado, Elhanan Bar-On. Percutaneous aspiration and irrigation technique for the treatment of pediatric septic hip: effectiveness and predictive parameters. J Pediatr Orthop B 2016 Nov;25(6):514-9. doi: 10.1097/BPB.0000000000000345.
19. Ahmad Essa 1, Michael Asa’af, Haim Shtarker. Preliminary results: continuous double luminal catheter drainage for the management of septic hip arthritis in children. J Pediatr Orthop B,2022 Jan 1;31(1):e11-e16. doi: 10.1097/BPB.0000000000000866.
20. Kristin S Livingston 1, Leslie A Kalish 2, Donald S Bae 3, Young-Jo Kim 3, Benjamin J Shore. Wash, Rinse, Repeat: Which Patients Undergo Serial Joint Irrigation in Pediatric Septic Hip Arthritis? J Pediatr Orthop. 2019 Aug;39(7):e494-e499. doi: 10.1097/BPO.0000000000001323.
21. Gaurav Gupta 1, Qaisur Rabbi, Vikas Bohra, Maulin M Shah. Protrusio acetabulae as a sequel to septic arthritis of the hip with obturator internus pyomyositis. J Pediatr Orthop B,2021 Nov 1;30(6):572-578. doi: 10.1097/BPB.0000000000000823.
22. Garg R, Ho J, Gourineni PV. Simplified arthroscopic lavage of pediatric septic hip: case series. J Pediatr Orthop B. 2020 May;29(3):304-308. doi: 10.1097/BPB.0000000000000717.
23. Thompson RM, Gourineni P. Arthroscopic Treatment of Septic Arthritis in Very Young Children. J Pediatr Orthop. 2017 Jan;37(1):e53-e57. doi: 10.1097/BPO.0000000000000659
24. Eric W Edmonds 1 2, Christina Lin 1, Christine L Farnsworth 2, James D Bomar 2, Vidyadhar V Upasani 1 2 . A Medial Portal for Hip Arthroscopy in Children With Septic Arthritis: A Safety Study. J Pediatr Orthop Nov/Dec 2018;38(10):527-531. doi: 10.1097/BPO.0000000000000861.
25. Scott Rosenfeld 1, Derek T Bernstein, Shiva Daram, John Dawson, Wei Zhang. Predicting the Presence of Adjacent Infections in Septic Arthritis in Children. J Pediatr Orthop 2016 Jan;36(1):70-4. doi: 10.1097/BPO.0000000000000389.
26. Corey O Montgomery 1, Eric Siegel, Robert D Blasier, Larry J Suva. Concurrent septic arthritis and osteomyelitis in children. J Pediatr Orthop , 2013 Jun;33(4):464-7. doi: 10.1097/BPO.0b013e318278484f.
27. Jedidiah E Schlung 1, Tracey P Bastrom 2, Joanna H Roocroft 2, Peter O Newton 2, Scott J Mubarak 1 2, Vidyadhar V Upasani. Femoral Neck Aspiration Aids in the Diagnosis of Osteomyelitis In Children With Septic Hip. J Pediatr Orthop ,Nov/Dec 2018;38(10):532-536. doi: 10.1097/BPO.0000000000000868.
28.Clinical Practice Guideline by PIDS and IDSA • JPIDS 2021
29. Ohl CA. Infectious arthritis of native joints. In: Mandell GL, Bennett JE, Dolin R, eds. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. 7th ed. Philadelphia, Pa.: Churchill Livingstone; 2010:1443-1456.
30. Liu C, Bayer A, Cosgrove SE, et al; Infectious Diseases Society of America. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52(3):e18–e55
31. No authors listed. British Society for Antimicrobial Chemotherapy.http://www.bsac.org.uk/pyxis/Bone%20and%20joint/Septic%20arthritis/Septic%20arthritis.htm(date last accessed 28 February 2009).
32. Vinod MB, Matussek J, Curtis N, Graham HK, Carapetis JR. Duration of antibiotics in children with osteomyelitis and septic arthritis. J Paediatr Child Health 2002;38:363-7
33. Peltola H, Paakkonen M, Kallio P, Kallio MJ; OM-SA Study Group. Clindamycin vs. first-generation cephalosporins for acute osteoarticular infections of childhood – a prospective quasi-randomized controlled trial. Clin Microbiol Infect. 2012;18(6):582–589.
34. Peltola H, Paakkonen M, Kallio P, Kallio MJ; Osteomyelitis-Septic Arthritis (OM-SA) Study Group. Prospective, randomized trial of 10 days versus 30 days of antimicrobial treatment, including a short-term course of parenteral therapy, for childhood septic arthritis. Clin Infect Dis. 2009;48(9):1201–1210


How to Cite this Article:  Gupta G, Ramani ET, Garg G, Shah M | Septic Arthritis Management: Current Guidelines | International Journal of Paediatric Orthopaedics | January-April 2022; 8(1): 08-13.

(Article Text HTML)      (Full Text PDF)


Pelvic Pyomyositis in Children: Current Concepts Review

Volume 8 | Issue 1 | January-April 2022 | Page: 02-07 | Archan Desai, Ashish Ranade, Mohan V. Belthur, Sandeep Patwardhan, Gauri A. Oka
DOI-10.13107/ijpo.2022.v08i01.127


Authors: Archan Desai [1], Ashish Ranade [1, 2], Mohan V. Belthur [3], Sandeep Patwardhan [4], Gauri A. Oka [1]

[1] Department of Orthopaedics, Bharati Hospital and Research Centre, Pune, Maharashtra, India.
[2] Department of Orthopaedics, Deenanath Mangeshkar Hospital, Pune, Maharashtra, India.
[3] Department of Child Health & Orthopaedics, University of Arizona College of Medicine-Phoenix, USA.
[4] Department of Orthopaedics, Sancheti Hospital, Pune, Maharashtra, India.

Address of Correspondence
Dr. Ashish Ranade,
Consultant Paediatric Orthopaedic Surgeon, Deenanath Mangeshkar Hospital, Pune, Maharashtra, India. Visiting Pediatric Orthopaedic Surgeon, Bharati Vidyapeeth Medical College Hospital, Pune, Maharashtra, India
E-mail: ranadea2@gmail.com


Abstract

Pyomyositis in children is an uncommon bacterial infection of skeletal muscles which has more frequently been described in tropical areas, but it is becoming increasingly recognized in temperate climates too. Any muscle group in the body can be involved, but it commonly affects the large muscle groups which are located around the pelvic girdle and lower extremities. Clinical presentation is very similar to septic arthritis of the hip and needs to be diagnosed early. MRI is the investigation of choice. Depending on the severity this condition, it can be treated conservatively with antibiotics in its early stage and with percutaneous or formal incision and drainage in later stages. Generally, if it is diagnosed early, good outcomes can be expected.
Keywords: Pelvic Pyomyositis, Septic arthritis, Infection, Magnetic resonance imaging


References

1. Bickels J, Ben-Sira L, Kessler A, Wientroub S. Primary pyomyositis. J Bone Joint Surg Am. 2002; 84(12):2277-2286.
2. Anand SV, Evans KT. Pyomyositis. Br J Surg. 1964; 51:917-920.
3. Levin MJ, Gardner P, Waldvogel FA. An un-usual infection due to staphylococcus aureus. N Engl J Med. 1971; 284(4):196-198.
4. Ciampi MA, Sadigh M, Sherwood JA, Protopapas Z, Thornton GF, Andriole VT. Temperate pyomyositis at two community hos-pitals. Infect Dis Clin Pract. 1998; 7:265-273.
5. Chiedozi LC: Pyomyositis: review of 205 cases in 112 patients, Am J Surg 137:255, 1979
6. De Boeck H, Noppen L, Desprechins B: Pyomyositis of the adductor muscles mimicking an infection of the hip. Diagnosis by magnetic resonance imaging: a case report, J Bone Joint Surg Am 76:747, 1994.
7. Hernandez RJ, Strouse PJ, Craig CL, et al: Focal pyomyositis of the perisciatic muscles in children, AJR Am J Roentgenol 179:1267, 2002.
8. Kadambari D, Jagdish S: Primary pyogenic psoas abscess in children, Pediatr Surg Int 16:408, 2000.
9. Orlicek SL, Abramson JS, Woods CR, et al: Obturator internus muscle abscess in children, J Pediatr Orthop 21:744, 2001.
10. Garcia-Mata S, Hidalgo-Ovejero A, Esparza-Estaun J. Primaryobturator-muscle pyomyositis in immunocompetent children. JChild Orthop. 2012;6:205–15.
11. Taksande A, Vilhekar K, Gupta S. Primary pyomyositis in a child. Int J Infect Dis. 2009;13(4):e149–51.
12. Christin L, Sarosi GA. Pyomyositis in North America: case reports and review. Clin Infect Dis. 1992;15:668–77.
13. Crum NF (2004) Bacterial pyomyositis in the United States. Am JMed 117(6):420–428
14. Moriarty P, Leung C, Walsh M, Nourse C (2015) Increasingpyomyositis presentations among children in Queensland,Australia. Pediatr Infect Dis J 34(1):1–4
15. Brown JD, Wheeler B (1984) Pyomyositis. Report of 18 cases inHawaii. Arch Intern Med 144(9):1749–1751
16. Verma S, Singhi SC, Marwaha RK, et al. Tropical pyomyositis inchildren: 10 years experience of a tertiary care hospital in northernIndia. J Trop Pediatr. 2013;59(3):243–5.
17. Gambhir IS, Singh DS, Gupta SS, Gupta PR, Kumar M. Tropicalpyomyositis in India: a clinico-histopathological study. J Trop MedHyg. 1992;95(1):42–6.
18. Malhotra P, Singh S, Sud A, et al. Tropical pyomyositis-experienceof a tertiary care hospital in North West India. J Assoc PhysiciansIndia. 2000;48:1057–60.
19. Chauhan S, Kumar R, Singh KK, Chauhan SS. Tropical pyomyositis: adiagnostic dilemma. J Ind Acad Clin Med. 2004;5:52–4.
20. Chauhan S, Jain S, Varma S, Chauhan SS. Tropical pyomyositis(myositis tropicans): current prospective. Postgrad Med J. 2004;80:267–70.
21. Smith MI, Vickers AB. Natural history of 338 treated and untreatedpatients with staphylococcal septicaemia (1936–1955). Lancet.1960;1(7138):1318–22.
22. Jayoussi R, Bialik V, Eyal A, Shehadeh N, Etzioni A. Pyomyositiscaused by vigorous exercise in a boy. Acta Paediatr. 1995;84(2):226–7.
23. Singh SB, Singh VP, Gupta S, Gupta RM, Sunder S. Tropical myo-sitis: a clinical, immunological and histopathological study. J AssocPhysicians India. 1989;37(9):561–3
24. Flier S, Dolgin SE, Saphir RL, et al: A case confirming the progressive stages of pyomyositis, J Pediatr Surg 38:1551, 2003.
25. .Moriarty, Leung C, Walsh M, Nourse C. Increasing pyomyositis presenting among children in Queensland, Australia. PediatrInfect Dis J. 2015;34(1):1–4.
26. Pannaraj PS, Hulten KG, Gonzalez BE, Mason Jr EO, Kaplan SL.Infective pyomyositis and myositis in children in the era of com-munity-acquired, methicillin-resistant Staphylococcus aureus infec-tion. Clin Infect Dis. 2006;43:953–60.
27. Mitchell PD, Hunt DM, Lyall H, Nolam M, et al. Panton-Valentineleukocidin-secreting Staphylococcus aureus causing sever muscu-loskeletal sepsis in children. A new threat. J Bone Joint Surg (Br).2007;89:1239–42.
28. Menge TJ, Cole HA, Mignemi ME, et al. Medial approach fordrainage of the obturator musculature in children.J Pediatr Orthop.2014;34:307–315.
29. Spiegel DA, Meyer JS, Dormans JP, et al. Pyomyositis in childrenand adolescents: report of 12 cases and review of the literature.JPediatr Orthop. 1999;19:143–150.
30. Renwick SE, Ritterbusch JF. Pyomyositis in children.J PediatrOrthop. 1993;13:769–772.
31. Mazur JM, Ross G, Cummings J, et al. Usefulness of magneticresonance imaging for the diagnosis of acute musculoskeletalinfections in children.J Pediatr Orthop. 1995;15:144–147.
32. Peckett WR, Butler-Manuel A, Apthorp LA. Pyomyositis of theiliacus muscle in a child.J Bone Joint Surg Br. 2001;83:103–105.
33. Thomas S, Tytherleigh-Strong G, Dodds R. Pyomyositis of theiliacus muscle in a child.J Bone Joint Surg Br. 2001;83:619–620.
34. Yuh WT, Schreiber AE, Montgomery WJ, et al. Magnetic resonanceimaging of pyomyositis.Skeletal Radiol. 1988;17:190–193.
35. Kocher MS, Zurakowski D, Kasser JR (1999) Differentiating be-tween septic arthritis and transient synovitis of the hip in children:an evidence- based clinical prediction algorithm. J Bone Joint SurgAm 81(12):1662–1670
36. Bertrand SL, Lincoln ED, Prohaska MG. Primary pyomyositis ofthe pelvis in children: a retrospective review of 8 cases.Orthopedics. 2011;34(12):832–40.
37. Unnikrishnan PN, Perry DC, George H, Bassi R, Bruce CE.Tropical primary pyomyositis in children of the UK: an emerging medical challenge. Int Orthop. 2010;34:109–13.
38. Kiran M, Mohamed S, Newton A, George H, Garg N, Bruce C. Pelvic pyomyositis in children: changing trends in occurrence and management. Int Orthop. 2018 May;42(5):1143-1147.
39. Birkbeck D, Watson JT (1995) Obturator internus pyomyositis. Acase report. Clin Orthop Relat Res 316:221–226
40. Tucker RE, Winter WG, Del Valle C, Uematsu A, Libke R(1978) Pyomyositis mimicking malignant tumor. Three casereports. J Bone Joint Surg Am 60:701–703
41. Karmazyn B, Loder RT, Kleiman MB, et al. The role of pelvicmagnetic resonance in evaluating nonhip sources of infection inchildren with acute nontraumatic hip pain.J Pediatr Orthop.2007;27:158–164.
42. Ovadia D, Ezra E, Ben-Sira L, et al. Primary pyomyositis inchildren: a retrospective analysis of 11 cases.J Pediatr Orthop B.2007;16:153–159.
43. Browne LP, Mason EO, Kaplan SL, et al. Optimal imaging strategyfor community-acquiredStaphylococcus aureusmusculoskeletalinfections in children.Pediatr Radiol. 2008;38:841–847.
44. Karmazyn B, Kleiman MB, Buckwalter K, et al. Acute pyomyositisof the pelvis: the spectrum of clinical presentations and MRfindings.Pediatr Radiol. 2006;36:338–343.
45. Marin C, Sanchez-Alegre ML, Gallego C, et al. Magnetic resonanceimaging of osteoarticular infections in children.Curr Probl DiagnRadiol. 2004;33:43–59.
46. Theodorou SJ, Theodorou DJ, Resnick D. MR imaging findings ofpyogenic bacterial myositis (pyomyositis) in patients with localmuscle trauma: illustrative cases.Emerg Radiol. 2007;14:89–96.
47. Damski GB, Garin EH, Ballinger WE, et al. Generalized non-suppurative myositis with staphylococcal septicemia. J Pediatr.1980;96:694–7.
48. Ameh EA (1999) Pyomyositis in children: analysis of 31 cases.Ann Trop Paediatr 19:263–265
49. Vij N, Ranade AS, Kang P, Belthur MV. Primary Bacterial Pyomyositis in Children: A Systematic Review. J Pediatr Orthop. 2021 Oct 1;41(9):e849-e854.
50. Song J, Letts M, Monson R (2001) Differentiation of psoasmuscle abscess from septic arthritis of the hip in children. ClinOrthop Relat Res 391:258–265
51. Armstrong DG, D’Amato CR, Strong ML (1993) Three cases ofstaphylococcal pyomyositis in adolescence, including one patientwith neurologic compromise. J Pediatr Orthop 13:452–455
52. Teague DC, Graney DO, Routt ML Jr. Retropubic vascular hazardsof the ilioinguinal exposure: a cadaveric and clinical study.J OrthopTrauma. 1996;10:156–159.
53. Karakurt L, Karaca I, Yilmaz E, et al. Corona mortis: incidence andlocation.Arch Orthop Trauma Surg. 2002;122:163–164.
54. Luhmann SJ, Jones A, Schootman M, et al. Differentiation betweenseptic arthritis and transient synovitis of the hip in children withclinical prediction algorithms.J Bone Joint Surg Am. 2004;86-A:956–962.
55. Chauhan S, Jain S, Varma S, Chauhan SS. Tropical pyomyositis (myositis tropicans): current perspective. Postgrad Med J. 2004 May;80(943):267-70.
56. White S, Stopka S, Nimityongskul P, Jorgensen D. Transgluteal Approach for Drainage of Obturator Internus Abscess in Pediatric Patients. J Pediatr Orthop. 2017 Jan;37(1):e62-e66.
57. Hall RL, Callaghan JJ, Moloney E, Martinez S, Harrelson JM(1990) Pyomyositis in a temperate climate. Presentation, diag-nosis, and treatment. J Bone Joint Surg Am 72:1240–1244
58. Mignemi ME, Menge TJ, Cole HA, Mencio GA, Martus JE, Lovejoy S, Stutz CM, Schoenecker JG. Epidemiology, diagnosis, and treatment of pericapsular pyomyositis of the hip in children. J Pediatr Orthop. 2014 Apr-May;34(3):316-25.
59. Gupta G, Rabbi Q, Bohra V, Shah MM. Protrusio acetabulae as a sequel to septic arthritis of the hip with obturator internus pyomyositis. J Pediatr Orthop B. 2021 Nov 1;30(6):572-578.


How to Cite this Article:  Desai A, Ranade A, Belthur MV, Patwardhan S, Oka GA | Pelvic Pyomyositis in Children: Current Concepts Review | International Journal of Paediatric Orthopaedics | January-April 2022; 8(1): 02-07.

(Article Text HTML)      (Full Text PDF)


Bruck Syndrome (Bone Fragility with Congenital Joint Contractures): A Case Report

Volume 7 | Issue 3 | September-December 2021 | Page: 29-34 | Gaurav Gupta, Qaisur Rabbi, Maulin Shah, Vikas Bohra
DOI-10.13107/ijpo.2021.v07i03.120


Authors: Deepika A. Pinto MS DNB Orth. [1], Sandeep V. Vaidya MS DNB Orth. [1]

[1] Department of Paediatric Orthopaedics, Pinnacle Ortho Center, LBS Road, Thane West, Maharashtra, India.

Address of Correspondence
Dr. Deepika A. Pinto,
Clinical Associate in Paediatric Orthopaedics, Pinnacle Ortho Center, LBS Road, Thane West, Maharashtra, India.
E-mail: deepupinto@gmail.com


Abstract

Background: Bruck syndrome is a disorder in which features of osteogenesis imperfecta and arthrogryposis multiplex congenita coexist. It is an extremely rare condition with less than 40 cases reported worldwide.
Case presentation: We describe the case of a girl child, born of a consanguineous marriage, who, at birth, was noted to have flexion contractures of both knees and elbows as well as right clubfoot. Post-natally, she developed repetitive fractures of both femurs occurring with trivial trauma. She presented to us at the age 8.5 years, with short stature and inability to stand due to the severe knee flexion contractures. She also had flexion contractures at bilateral elbows. Intelligence and fine motor skills were normal. Sclerae, teeth and hearing were also normal. Radiographs revealed osteoporosis, severely deformed femora and vertebral body flattening. A diagnosis of Bruck syndrome was made on the basis of clinical findings. Genetic testing was offered, but declined by the child’s parents. She has since undergone osteotomies and rodding for both femurs, and bilateral distal femoral anterior hemi-epiphysiodesis for gradual correction of knee contractures. She is on cyclical pamidronate therapy to address bone fragility.
Conclusion: In this report, we describe the diagnostic features and management of this rare syndrome, and provide a summary of the existing literature on the disorder.
Keywords: Bruck syndrome, Osteogenesis imperfecta, Arthrogryposis, Congenital joint contractures, Bone fragility


References

1. Orpha.net. Bruck Syndrome. https://www.orpha.net/consor/cgibin/OC_Exp.php?lng=en&Expert=2771 Accessed 24th July 2020.
2. Sharma NL, Anand JS. Osteogenesis Imperfecta with Arthrogryposis Multiplex Congenita. J Indian Med Assoc. 1964;43:124–6.
3. Datta V, Sinha A, Saili A, Nangia S. Bruck syndrome. Indian J Pediatr. 2005;72(5):441–2.
4. Viljoen D, Versfeld G, Beighton P. Osteogenesis imperfecta with congenital joint contractures (Bruck Syndrome). Clin Genet. 1989;36(2):122–6.
5. Ha-Vinh R, Alanay Y, Bank RA, Campos-Xavier AB, Zankl A, Superti-Furga A, et al. Phenotypic and molecular characterization of Bruck syndrome (osteogenesis imperfecta with contractures of the large joints) caused by a recessive mutation in PLOD2. Am J Med Genet Part A. 2004;131A(2):115–20.
6. van der Slot AJ, Zuurmond A-M, Bardoel AFJ, Wijmenga C, Pruijs HEH, Sillence DO, et al. Identification of PLOD2 as Telopeptide Lysyl Hydroxylase, an Important Enzyme in Fibrosis. J Biol Chem. 2003;278(42):40967–72.
7. Shaheen R, Al-Owain M, Faqeih E, Al-Hashmi N, Awaji A, Al-Zayed Z, et al. Mutations in FKBP10 cause both Bruck syndrome and isolated osteogenesis imperfecta in humans. Am J Med Genet Part A. 2011;155(6):1448–52.
8. Bank RA, Robins SP, Wijmenga C, Breslau-Siderius LJ, Bardoel AFJ, Van der Sluijs HA, et al. Defective collagen crosslinking in bone, but not in ligament or cartilage, in Bruck syndrome: Indications for a bone-specific telopeptide lysyl hydroxylase on chromosome 17. Proc Natl Acad Sci. 1999;96(3):1054–8.
9. Mokete L, Robertson A, Viljoen D, Beighton P. Bruck syndrome: congenital joint contractures with bone fragility. J Orthop Sci. 2005;10(6):641–6.
10. Breslau-Siderius EJ, Engelbert RHB, Pals G, van der Sluijs JA. Bruck syndrome: a rare combination of bone fragility and multiple congenital joint contractures. J Pediatr Orthop B. 1998;7(1):35–8.
11. Moravej H, Karamifar H, Karamizadeh Z, Amirhakimi G, Atashi S, Nasirabadi S. Bruck syndrome – a rare syndrome of bone fragility and joint contracture and novel homozygous FKBP10 mutation. Endokrynol Pol. 2015;66(2):170–4.
12. Luce L, Casale M, Waldron S. A Rare Case of Bruck Syndrome Type 2 in Siblings With Broad Phenotypic Variability. Ochsner J. 2020;20(2):204–8.
13. Puig-Hervás MT, Temtamy S, Aglan M, Valencia M, Martínez-Glez V, Ballesta-Martínez MJ, et al. Mutations in PLOD2 cause autosomal-recessive connective tissue disorders within the Bruck syndrome-Osteogenesis imperfecta phenotypic spectrum. Hum Mutat. 2012;33(10):1444–9.
14. Boyce AM, Gafni RI. Approach to the Child with Fractures. J Clin Endocrinol Metab. 2011;96(7):1943–52.
15. Alman B, Goldberg MJ. Syndromes of Orthopaedic Importance. In: Lowell and Winter’s Pediatric Orthopaedics. 7th ed. Lippincott Williams & Wilkins; 2014. p. 266.
16. Otaify GA, Aglan MS, Ibrahim MM, Elnashar M, El Banna RAS, Temtamy SA. Zoledronic acid in children with osteogenesis imperfecta and Bruck syndrome: a 2-year prospective observational study. Osteoporos Int. 2016;27(1):81–92.
17. Santana A, Oleas-Santillán G, Franzone JM, Nichols LR, Bowen JR, Kruse RW. Orthopedic Manifestations of Bruck Syndrome: A Case Series with Intermediate to Long-term Follow-Up. Case Rep Orthop. 2019;2019:8014038.


How to Cite this Article:  Pinto AD, Vaidya SV | Bruck Syndrome (Bone Fragility with Congenital Joint Contractures): A Case Report. | September-December 2021; 7(3): 29-34.

(Article Text HTML)      (Full Text PDF)


Introducing and Treating a Pediatric Monteggia Intermediate-Type 3 and 4 Fracture: A Case Report

Volume 7 | Issue 3 | September-December 2021 | Page: 50-52 | Pavan Soni, Tushar Agrawal

DOI-10.13107/ijpo.2021.v07i03.125


Authors: Pavan Soni  D Ortho. [1], Tushar Agrawal DNB Ortho. [1]

[1] Department of Orthopaedic, Aastha Hospital, Kandivali (W), Mumbai, Maharashtra, India.

Address of Correspondence
Dr Pavan Soni
Department of Orthopaedics, Aastha Hospital, Kandivali (W), Mumbai, Maharashtra, India.
E-mail: pavan.soni22@gmail.com


Abstract

Bado based his classification of Monteggia fractures on the direction of the radial head dislocation. We present a case of a Monteggia fracture that is an intermediary between Bado type 3 and 4 occurring in a 4-year-old Indian girl. It is a fracture of the proximal ulna and radial shaft, along with a lateral dislocation of the radial head that was treated with retrograde elastic nailing of the radius fist, then the ulna. Our case report is unique because this fracture pattern has not been presented earlier in literature. Interestingly, what presented as a both bone forearm fracture, on careful examination, was a Monteggia fracture. Our report aims to help other surgeons identify and treat this complex injury, in addition, increase awareness of this rare Monteggia variant.
Keywords: Monteggia, Paediatric forearm fractures, Elbow injuries


References

[1] Olney BW, Menelaus MB. Monteggia and equivalent lesions in childhood. Journal of pediatric orthopedics. 1989 Mar 1;9(2):219-23.
[2] Bado JL. 7 The Monteggia Lesion. Clinical Orthopaedics and Related Research (1976-2007). 1967 Jan 1;50:71-86.
[3] Ravessoud FA. Lateral condylar fracture and ipsilateral ulnar shaft fracture: Monteggia equivalent lesions?. Journal of pediatric orthopedics. 1985 May 1;5(3):364-6.
[4] Arazi M, Ögün TC, Kapicioglu MS. The Monteggia lesion and ipsilateral supracondylar humerus and distal radius fractures. Journal of orthopaedic trauma. 1999 Jan 1;13(1):60-3.
[5] Bhandari N, Jindal P. Monteggia lesion in a child: Variant of a Bado Type-IV lesion. A case report. JBJS. 1996 Aug 1;78(8):1252
[6] Rang, M., Pring, M. E., & Wenger, D. R. (2005). Rang’s children’s fractures.
[7] Gleeson AP, Beattie TF. Monteggia fracture-dislocation in children. Emergency Medicine Journal. 1994 Sep 1;11(3):192-4.


How to Cite this Article:  Soni P, Agrawal T | Introducing and Treating a Pediatric Monteggia Intermediate-Type 3 and 4 Fracture: A Case Report | International Journal of Paediatric Orthopaedics | September- December 2021; 7(3): 50-52.

(Article Text HTML)      (Full Text PDF)


Temporary Transphyseal Medial Malleolar Screw Hemiepiphysiodesis for Acquired Ankle Valgus Following Fibular Graft Harvest in Children: A Series of 15 Patients

Volume 7 | Issue 3 | September-December 2021 | Page: 17-22 | Ankit Jain, Anil Agarwal, Nitish Bikram Deo, Ankur, Jatin Raj Sareen

DOI-10.13107/ijpo.2021.v07i03.117


Authors: Ankit Jain D. Ortho. [1], Anil Agarwal MS Ortho. [1], Nitish Bikram Deo MS Ortho. [1], Ankur MS Ortho. [1], Jatin Raj Sareen MS Ortho. [1]

[1] Department of Paediatric Orthopaedics, Chacha Nehru Bal Chikitsalaya, Delhi, India.

Address of Correspondence
Dr Anil Agarwal
Specialist, Department of Paediatric Orthopaedics, Chacha Nehru Bal Chikitsalaya, Delhi, India.
E-mail: anilrachna@gmail.com


Abstract

Purpose: To assess the role of temporary transphyseal medial malleolar screw hemiepiphysiodesis in cases of acquired ankle valgus following non-vascularized fibular harvest.
Methods: This retrospective chart review included 15 children (18 ankles). Exclusion criteria were inadequate records or additional procedures besides screw hemiepiphysiodesis. Radiological evaluations included lateral distal tibial angle (LDTA) and fibular station (Malhotra grade).
Results : The average patient age was 8.6 years at surgery. The overall duration of treatment was 18.2 months and post removal follow-up (5 ankles) was 16.6 months. The average correction rate was 0.48 degrees/ month. LDTA changed significantly following hemiepiphysiodesis (Pre-op 077.3 degrees/ in situ follow-up 85.9 degrees). The Malhotra grade did not change significantly during the same period. The average recurrence rate [noted in 4/5 patients] was 0.52 degrees per month. However, LDTA and Malhotra grade did not change significantly post removal.
Conclusions : We report the results of temporary transphyseal medial malleolar screw hemiepiphysiodesis for post fibular harvest acquired ankle valgus in children. Temporary hemiepiphysiodesis is a viable option for the correction of acquired ankle valgus in children. The fibular station is however not restored following the procedure. Recurrence of deformity following screw removal remains a worrying complication in some patients.
Keywords: Hemiepiphysiodesis, Ankle valgus, Growth modulation, Fibula, Harvest


References

1. Davids JR, Valadie AL, Ferguson RL, Bray EW 3rd, Allen BL Jr. Surgical management of ankle valgus in children: use of a transphyseal medial malleolar screw. J Pediatr Orthop. 1997;17:3-8.
2. Stevens PM, Belle RM. Screw epiphysiodesis for ankle valgus. J Pediatr Orthop. 1997;17:9-12.
3. Stevens PM, Kennedy JM, Hung M. Guided growth for ankle valgus. J Pediatr Orthop. 2011;31:878-83.
4. Aurégan JC, Finidori G, Cadilhac C, Pannier S, Padovani JP, Glorion C. Children ankle valgus deformity treatment using a transphyseal medial malleolar screw. Orthop Traumatol Surg Res. 2011;97:406-9.
5. Driscoll M, Linton J, Sullivan E, Scott A. Correction and recurrence of ankle valgus in skeletally immature patients with multiple hereditary exostoses. Foot Ankle Int. 2013;34:1267-73.
6. Driscoll MD, Linton J, Sullivan E, Scott A. Medial malleolar screw versus tension-band plate hemiepiphysiodesis for ankle valgus in the skeletally immature. J Pediatr Orthop. 2014;34:441-6.
7. Bayhan IA, Yildirim T, Beng K, Ozcan C, Bursali A. Medial malleolar screw hemiepiphysiodesis for ankle valgus in children with spina bifida. Acta Orthop Belg. 2014;80:414-8.
8. Chang FM, Ma J, Pan Z, Hoversten L, Novais EN. Rate of correction and recurrence of ankle valgus in children using a transphyseal medial malleolar screw. J Pediatr Orthop. 2015;35:589-92.
9. Rupprecht M, Spiro AS, Rueger JM, Stücker R. Temporary screw epiphyseodesis of the distal tibia: a therapeutic option for ankle valgus in patients with hereditary multiple exostosis. J Pediatr Orthop. 2011;31:89-94.
10. Rupprecht M, Spiro AS, Breyer S, Vettorazzi E, Ridderbusch K, Stücker R. Growth modulation with a medial malleolar screw for ankle valgus deformity. 79 children with 125 affected ankles followed until correction or physeal closure. Acta Orthop. 2015;86:611-5.
11. Rupprecht M, Spiro AS, Schlickewei C, Breyer S, Ridderbusch K, Stücker R. Rebound of ankle valgus deformity in patients with hereditary multiple exostosis. J Pediatr Orthop. 2015;35:94-9.
12. Westberry DE, Carpenter AM, Thomas JT, Graham GD, Pichiotino E, Hyer LC. Guided growth for ankle valgus deformity: the challenges of hardware removal. J Pediatr Orthop. 2020;40:e883-e888.
13. Gaukel S, Leu S, Skovguard SR, Aufdenblatten C, Ramseier LE, Vuille-Dit-Bille RN. Temporary screw epiphysiodesis for ankle valgus in children. Acta Orthop Belg. 2020;86:e supplement 37-43.
14. Steinlechner CW, Mkandawire NC. Non-vascularised fibular transfer in the management of defects of long bones after sequestrectomy in children. J Bone Joint Surg Br. 2005;87:1259-63.
15. Agarwal A, Kumar D, Agrawal N, Gupta N. Ankle valgus following non-vascularized fibular grafts in children-an outcome evaluation minimum two years after fibular harvest. Int Orthop. 2017;41:949-955.
16. Agarwal A. The regeneration at non vascularized fibular harvest site and development of ankle valgus in donor leg-investigations done over two time points. J Clin Orthop Trauma. 2019;10:999-1003.
17. Agarwal A. Fibular donor site following non vascularized harvest: clinico-radiological outcome at minimal five year follow-up. Int Orthop. 2019;43:1927-31.
18. Goh JCH, Mech AMI, Lee EH, et al. Biomechanical study on the load-bearing characteristics of the fibula and the effects of the fibular resection. Clin Orthop 1992;279:223-8.
19. González-Herranz P, del Río A, Burgos J, López-Mondejar JA, Rapariz JM. Valgus deformity after fibular resection in children. J Pediatr Orthop. 2003;23:55-9.
20. Babhulkar SS, Pande KC, Babhulkar S. Ankle instability after fibular resection. J Bone Joint Surg Br. 1995:77:258-61.
21. Kang SH, Rhee SK, Song SW, Chung JW, Kim YC, Suhl KH. Ankle deformity secondary to acquired fibular segmental defect in children. Clin Orthop Surg. 2010;2:179-85.
22. Van der Veen FJ, Strackee SD, Besselaar PP. Progressive valgus deformity of the donor-site ankle after extraperiosteal harvesting the fibular shaft in children. Treatment with osteotomy and synostosis at one session. J Orthop. 2014;12 (Suppl 1):S94-S100.
23. Lesiak AC, Esposito PW. Progressive valgus angulation of the ankle secondary to loss of fibular congruity treated with medial tibial hemiepiphysiodesis and fibular reconstruction. Am J Orthop (Belle Mead NJ). 2014;43:280-3.
24. Iamaguchi RB, Fucs PM, da Costa AC, Chakkour I. Vascularised fibular graft for the treatment of congenital pseudarthrosis of the tibia: long-term complications in the donor leg. Int Orthop. 2011;35:1065-70.
25. Fragnière B, Wicart P, Mascard E, Dudousset J (2003) Prevention of ankle valgus after vascularized fibular grafts in children. Clin Orthop Relat Res. 2003;408:245-51.
26. Sulaiman AR, Wan Z, Awang S, Che Ahmad A, Halim AS, Ahmad Mohd Zain R. Long-term effect on foot and ankle donor site following vascularized fibular graft resection in children. J Pediatr Orthop B. 2015;24:450-5.
27. Malhotra D, Puri R, Owen R. Valgus deformity of the ankle in children with spina bifida aperta. J Bone Joint Surg Br. 1984;66:381-5.
28. Gilbert A, Brockman R. Congenital pseudarthrosis of the tibia. Long-term followup of 29 cases treated by microvascular bone transfer. Clin Orthop Relat Res. 1995;314:37-44.
29. Frick SL, Shoemaker S, Mubarak SJ. Altered fibular growth patterns after tibiofibular synostosis in children. J Bone Joint Surg Am. 2001;83:247-54.


How to Cite this Article:  Jain A, Agarwal A, Deo NB, Ankur, Sareen JR | Temporary Transphyseal Medial Malleolar Screw Hemiepiphysiodesis for Acquired Ankle Valgus following Fibular Graft Harvest in Children: A Series of 15 Patients | International Journal of Paediatric Orthopaedics | September-December 2021; 7(3): 17-22.

(Article Text HTML)      (Full Text PDF)