Management of Limb Deficiencies

Volume 10 | Issue 2 | May-August 2024 | Page: 48-54 | Sakti Prasad Das, Sankar Ganesh, Prateek Behera

DOI- https://doi.org/10.13107/ijpo.2024.v10.i02.194

Submitted: 11/03/2024; Reviewed: 08/04/2024; Accepted: 25/06/2024; Published: 10/08/2024


Authors: Sakti Prasad Das MS(Ortho.), DNB(PMR) [1], Sankar Ganesh MPT [2], Prateek Behera MS(Ortho.), DNB(Ortho.) [3]

[1] Medical Education & Training, DRIEMS University, Odisha, Tangi, Cuttack, Odisha, India.
[2] Department of Physiotherapy, Composite Regional Centre, Lucknow, Uttar Pradesh, India.
[3] Department of Orthopaedics, AIIMS Bhopal, Madhya Pradesh, India.

Address of Correspondence

Dr. Sakti Prasad Das,
Director, Medical Education & Training, DRIEMS University, Odisha, Tangi, Cuttack, Odisha, India.
E-mail: sakti2663@yahoo.com


Abstract

Limb deficiency disorders encompass a wide variety of congenital anomalies that have a significant underdevelopment or even complete absence of bones in the limbs. Treatment of these conditions must be holistic with the child at the centre. This article provides a review of the current understanding of the management of such conditions. Surgical treatment offers a practical and effective solution for treating many variants of congenital limb abnormalities. Although novel surgical treatments may expand the range of disorders that can be treated, it is crucial for both the surgeon and the family to be aware of the careful prognosis associated with the methods used. Additionally, the importance of an amputation as an option should always be kept under consideration.
Keywords: Amputation, Congenital Abnormalities, Deformity correction, Limb reconstruction, Pediatric skeletal deficiencies, Skeletal dysplasia


References

1. WHO. Congenital disorders. Geneva: WHO, 2023. Available: https://www.who.int/news-room/fact-sheets/detail/birth-defects
2. Moges N, Anley DT, Zemene MA, Adella GA, Solomon Y, Bantie B, et al. Congenital anomalies and risk factors in Africa: a systematic review and meta-analysis. BMJ paediatrics open, 2023;7(1), e002022. https://doi.org/10.1136/bmjpo-2023-002022
3. WHO. International statistical classification of diseases and related health problems (ICD)-11. Geneva WHO. 2023. Available: https://www.who.int/classifications/classification-of-diseases
4. Epps CH Jr. Proximal femoral focal deficiency. J Bone Joint Surg Am 1983; 65: 867–70.
5. Kakarla S. Proximal femoral focal deficiency (PFFD) imaging spectrum. J Med Sci Res. 2015;3(2):90–93. doi: 10.17727/JMSR.2015/3-018
6. Paley D, Guardo F. Lengthening reconstruction surgery for congenital deficiency. In: Kocaoglu M, Tsuchiya H, Eralp L, editors. Advanced techniques in limb reconstruction surgery. 2014. pp. 245–298.
7. Gupta SK, Alassaf N, Harrop AR, Kiefer GN. Principles of rotationplasty. J Am Acad Orthop Surg. 2012;20:657–667. doi: 10.5435/JAAOS-20-10-657
8. Ackman J, Altiok H, Flanagan A, Peer M, Graf A, Krzak J, et al. Long-term follow-up of Van Nes rotationplasty in patients with congenital proximal focal femoral deficiency. Bone Joint J. 2013;95-B(2):192–198. doi: 10.1302/0301-620X.95B2.30853
9. Jones D, Barnes J, Lloyd-Roberts GC. Congenital aplasia and dysplasia of the tibia with intact fibula. Classification and management. J Bone Joint Surg Br. 1978;60(1):31-39. doi:10.1302/0301-620X.60B1.627576
10. Kalamchi A., Dawe R.W. Congenital deficiency of the tibia. J. Bone Jt. Surg. Br. 1985;67:581–584. doi: 10.1302/0301-620X.67B4.4030854
11. Weber M. New classification and score for tibia hemimelia. J Child Orthop. 2008;2:169–175.
12. Fernandez-Palazzi F, Bendahan J, Rivas S. Congenital deficiency of the tibia: a report on 22 cases. J Pediatr Orthop B. 1998;7:298–302.
13. Epps C.H., Jr., Schneider P. Treatment of hemimelias of the lower extremity. Long–term results. J. Bone Jt. Surg. Am. Vol. 1989;71:273–277. doi: 10.2106/00004623-198971020-00015
14. Putti V. The treatment of congenital absence of the tibia or fibula. Chir. Org. Mov. 1929;7:513.
15. Paley D. Surgical reconstruction for fibular hemimelia. J. Child. Orthop. 2016;10:557–583. doi: 10.1007/s11832-016-0790-0
16. Paley D., Robbins C. Fibular hemimelia Paley type 3. In: Rozbruch S.R., Hamdy R., editors. Limb Lengthening and Reconstruction Surgery Case Atlas. 1st ed. Springer International Publishing; Cham, Switzerland: 2015. pp. 1–8.
17. Johnson CE, Haideri NF. Comparison of functional outcome in fibular deficiency treated by limb salvage versus Syme’s amputation. In: Herring JA, Birch JG, eds. The Child With a Limb Deficiency. Rosemont: American Academy of Orthopaedic Surgeons; 1998: 173–177.
18. Herzenberg J., Shabtai L, Standard SC. Fibular hemimelia: Principles and techniques of management. In: Sabharwal S., editor. Pediatric Lower Limb Deformities, Principles and Techniques of Management. 1st ed. Springer International Publishing; Cham, Switzerland: 2016. pp. 427–454.
19. Birch JG, Lincoln TL, Mack PW, et al. Congenital fibular deficiency: a review of thirty years’ experience at one institution and a proposed classification system based on clinical deformity. J Bone Joint Surg Am. 2011;93:1144–1151.
20. Ali S, Kaplan S, Kaufman T, Fenerty S, Kozin S, Zlotolow DA. Madelung deformity and Madelung-type deformities: a review of the clinical and radiological characteristics. Pediatr Radiol. 2015;45(12):1856-1863. doi:10.1007/s00247-015-3390-0
21. Nielsen JB. Madelung’s deformity. A follow-up study of 26 cases and a review of the literature. Acta Orthop Scand. 1977;48(4):379-384. doi:10.3109/17453677708992012
22. Farr S, Martinez-Alvarez S, Little KJ et al (2021) The prevalence of Vickers’ ligament in Madelung’s deformity: a retrospective multicentre study of 75 surgical cases. J Hand Surg Eur. https://doi. org/ 10. 1177/ 17531 93420 981522
23. Vickers D, Nielsen G. Madelung deformity: surgical prophylaxis (physiolysis) during the late growth period by resection of the dyschondrosteosis lesion. J Hand Surg Br. 1992;17(4):401-407.
24. Laffosse JM, Abid A, Accadbled F, Knör G, de Gauzy JS, Cahuzac JP. Surgical correction of Madelung’s deformity by combined corrective radioulnar osteotomy: 14 cases with four-year minimum follow-up. IntOrthop. 2009; 33: 1655-1661.
25. Steinman S, Oishi S, Mills J, Bush P, Wheeler L, Ezaki M. Volar ligament release and distal radial dome osteotomy for the correction of Madelung deformity: long-term follow-up. J Bone Joint Surg Am. 2013;95(13):1198-1204. doi:10.2106/JBJS.L.00714
26. Colen DL, Lin IC, Levin LS, Chang B. Radial longitudinal deficiency: recent developments, controversies, and an evidence-based guide to treatment. J Hand Surg Am. 2017 Jul;42(7):546-563. https://doi.org/10.1016/j.jhsa.2017.04.012
27. Bednar MS, James MA, Light TR. Congenital longitudinal deficiency. J Hand Surg Am. 2009 Nov;34(9):1739-1747. https://doi.org/10.1016/j.jhsa.2009.09.002
28. Stutz C, Oishi S. Radial longitudinal deficiency: radius hypoplasia. In: Laub Jr DR, ed. Congenital Anomalies of the Upper Extremity. New York: Springer; 2015:85-94.
29. Takagi T, Seki A, Mochida J, Takayama S. Bone lengthening of the radius with temporary external fixation of the wrist for mild radial club hand. J Plast Reconstr Aesthetic Surg. 2014;67:1688e1693. https://doi.org/10.1016/ j.bjps.2019.05.044
30. Buck-Gramcko D. Radialization as a new treatment for radial club hand. J. Hand Surg. Am. 1985;10(6 Pt 2):964–968. doi: 10.1016/S0363-5023(85)80013-7
31. Wall LB, Ezaki M, Oishi SN. Management of congenital radial longitudinal deficiency: controversies and current concepts. Plast Reconstr Surg. 2013 Jul;132(1):122-128.
32. Cole RJ, Manske PR .Classification of ulnar deficiency according to the thumb and first web.. J Hand Surg Am. 1997;22:479–488.

 


How to Cite this Article:  Das SP, Ganesh S, Behera P | Management of Limb Deficiencies | International Journal of Paediatric Orthopaedics | May-August 2024; 10(2): 48-54. https://doi.org/10.13107/ijpo.2024.v10.i02.194

(Article Text HTML)      (Full Text PDF)


Management of Complex Foot Deformities in Children

Volume 10 | Issue 2 | May-August 2024 | Page: 34-39 | Sagar Umerjikar, Abhishek V. Mundargi, Koushik N. Subramanyam

DOI- https://doi.org/10.13107/ijpo.2024.v10.i02.190

Submitted: 25/05/2024; Reviewed: 24/06/2024; Accepted: 21/07/2024; Published: 10/08/2024


Authors: Sagar Umerjikar MS Ortho [1], Abhishek V. Mundargi MS Ortho [1], Koushik N. Subramanyam MS Ortho [1]

[1] Department of Orthopaedics, Sri Sathya Sai Institute of Higher Medical Sciences, Prasanthigram, Puttaparthi, Andhra Pradesh, India.

Address of Correspondence

Dr. Koushik Narayan Subramanyam ,
Department of Orthopaedics, Sri Sathya Sai Institute of Higher Medical Sciences, Prasanthigram, Puttaparthi, Andhra Pradesh, India.
E-mail: koushik.n@sssihms.org.in


Abstract

Aim: The aim of this article is to understand the intricacies of various complex foot deformities in children and non-operative and operative strategies in managing them by reviewing data from published literature.
Methods: A review of information pertaining to complex foot deformities in children was assimilated for holistic understanding of the condition along with their management from various sources from PubMed and Google Scholar.
Conclusion: Treatment of pediatric foot and ankle deformities is complex and must be individualized. The inter-individual phenotypic variability demands a personalized planning of each foot to be operated. Factors to consider are age at presentation, primary pathology causing the deformity and the underlying complex pathoanatomy. Treatment must also assess the possibility of relapse of the deformity and measures must be incorporated to prevent the same.

Keywords: 


References

1. Kocaoğlu M, Eralp L, Atalar AC, Bilen FE. Correction of complex foot deformities using the Ilizarov external fixator. J Foot Ankle Surg. 2002 Jan-Feb;41(1):30-9. doi: 10.1016/s1067-2516(02)80007-2. PMID: 11858604.
2. Dhar S. Ilizarov external fixation in the correction of severe pediatric foot and ankle deformities. Foot Ankle Clin. 2010 Jun;15(2):265-85. doi: 10.1016/j.fcl.2010.03.001. PMID: 20534355.
3. Riganti S, Coppa V, Nasto LA, Di Stadio M, Calevo MG, Gigante AP, Boero S. Treatment of complex foot deformities with hexapod external fixator in growing children and young adult patients. Foot Ankle Surg. 2019 Oct;25(5):623-629. doi: 10.1016/j.fas.2018.07.001. Epub 2018 Jul 9. PMID: 30321938.
4. Reeves CL, Shane AM, Zappasodi F, Payne T. Surgical Correction of Rigid Equinovarus Contracture Utilizing Extensive Soft Tissue Release. Clin Podiatr Med Surg. 2016 Jan;33(1):139-52. doi: 10.1016/j.cpm.2015.06.009. Epub 2015 Aug 20. PMID: 26590731.
5. Vlachou M, Dimitriadis D. Split tendon transfers for the correction of spastic varus foot deformity: a case series study. J Foot Ankle Res. 2010 Dec 14;3:28. doi: 10.1186/1757-1146-3-28. PMID: 21156075; PMCID: PMC3016343.
6. Elgeidi A, Abulsaad M. Combined double tarsal wedge osteotomy and transcuneiform osteotomy for correction of resistant clubfoot deformity (the “bean-shaped” foot). J Child Orthop. 2014 Oct;8(5):399-404. doi: 10.1007/s11832-014-0613-0. Epub 2014 Oct 4. PMID: 25280469; PMCID: PMC4391053.
7. Rampal V, Giuliano F. Forefoot malformations, deformities and other congenital defects in children. Orthop Traumatol Surg Res. 2020 Feb;106(1S):S115-S123. doi: 10.1016/j.otsr.2019.03.021. Epub 2019 Oct 21. PMID: 31648997.
8. Moreira, A., Benjamin Ravetti, L., Carrapeiro Prina, D. et al. Anterior tibial tendon transfer in idiopathic clubfoot: pull-out vs. other fixations – a systematic review. BMC Musculoskelet Disord 25, 638 (2024). https://doi.org/10.1186/s12891-024-07621-9
9. Farsetti P, Dragoni M, Ippolito E. Tibiofibular torsion in congenital clubfoot. J Pediatr Orthop B. 2012 Jan;21(1):47-51. doi: 10.1097/BPB.0b013e32834d4dc3. PMID: 22027706.
10. Walton DM, Liu RW, Farrow LD, Thompson GH. Proximal tibial derotation osteotomy for torsion of the tibia: a review of 43 cases. J Child Orthop. 2012 Mar;6(1):81-5. doi: 10.1007/s11832-012-0384-4. Epub 2012 Jan 31. PMID: 23448753; PMCID: PMC3303016.
11. Alkar F, Louahem D, Bonnet F, Patte K, Delpont M, Cottalorda J. Long-term Results After Extensive Soft Tissue Release in Very Severe Congenital Clubfeet. J Pediatr Orthop. 2017 Oct/Nov;37(7):500-503. doi: 10.1097/BPO.0000000000000703. PMID: 26633817.
12. Eidelman M, Kotlarsky P, Herzenberg JE. Treatment of relapsed, residual and neglected clubfoot: adjunctive surgery. J Child Orthop. 2019 Jun 1;13(3):293-303. doi: 10.1302/1863-2548.13.190079. PMID: 31312269; PMCID: PMC6598039.
13. Kirienko A, Villa A, Calhoun JH Ilizarov technique for complex foot and ankle deformities. Boca Raton: CRC Press, 2003.
14. van Bosse HJP. Challenging clubfeet: the arthrogrypotic clubfoot and the complex clubfoot. J Child Orthop. 2019 Jun 1;13(3):271-281. doi: 10.1302/1863-2548.13.190072. PMID: 31312267; PMCID: PMC6598040.
15. Conklin MJ, Kishan S, Nanayakkara CB, Rosenfeld SR. Orthopedic guidelines for the care of people with spina bifida. J Pediatr Rehabil Med. 2020;13(4):629-635. doi: 10.3233/PRM-200750. PMID: 33252095; PMCID: PMC7838956.
16. Horsch A, Petzinger L, Ghandour M, Putz C, Renkawitz T, Götze M. Defining Equinus Foot in Cerebral Palsy. Children (Basel). 2022 Jun 25;9(7):956. doi: 10.3390/children9070956. PMID: 35883940; PMCID: PMC9320304.
17. Kadhim M, Holmes L Jr, Church C, Henley J, Miller F. Pes planovalgus deformity surgical correction in ambulatory children with cerebral palsy. J Child Orthop. 2012 Jul;6(3):217-27. doi: 10.1007/s11832-012-0413-3. Epub 2012 Jun 20. PMID: 23814622; PMCID: PMC3400002.
18. Hochstetter-Owen J, Stott S, Williams SA. The efficacy of split tibial tendon transfers on functional gait outcomes for children and youth with cerebral palsy and spastic equinovarus foot deformities. Bone Jt Open. 2023 May 1;4(5):283-298. doi: 10.1302/2633-1462.45.BJO-2023-0005.R1. PMID: 37121581; PMCID: PMC10149292.
19. Wirth T. Congenital Vertical Talus. Foot Ankle Clin. 2021 Dec;26(4):903-913. doi: 10.1016/j.fcl.2021.08.002. Epub 2021 Oct 7. PMID: 34752243.
20. Altaf KA, Shah SBS, Ahmad S, Mumtaz U, Mantoo SA. Results of JESS (Joshi’s External Stabilizing System) in Relapsed, Neglected and Neurogenic Clubfoot in an Age Group of 2-10 Years. Ortop Traumatol Rehabil. 2020 Apr 30;22(2):121-129. doi: 10.5604/01.3001.0014.1170. PMID: 32468991.


How to Cite this Article: Umerjikar S, Mundargi AV, Subramanyam KN | Management  of Complex Foot Deformities in Children | International Journal of Paediatric Orthopaedics | May-August 2024; 10(2): 34-39.

(Article Text HTML)      (Full Text PDF)


Radiological Assessment and Planning of Deformities

Volume 10 | Issue 2 | May-August 2024 | Page: 12-17 | Sudhanshu Bansal, Gaurav Gupta, Deepak Khurana 

DOI- https://doi.org/10.13107/ijpo.2024.v10.i02.184

Submitted: 05/03/2024; Reviewed: 02/04/2024; Accepted: 15/05/2024; Published: 10/08/2024


Authors: Sudhanshu Bansal MS Ortho [1], Gaurav Gupta MS Ortho [2], Deepak Khurana MS Ortho [3]

[1] Department of Paediatric Orthopaedic Surgery, CODS Clinic, Ludhiana, Amandeep Hospital, Amritsar, Punjab, India.
[2] Department of Paediatric Orthopaedic Surgery, Child Ortho Clinic, Delhi-NCR, India.
[3] Department of Paediatric Orthopaedic Surgery, JCPODS, Jeevan Rekha hospital, Jaipur, Rajasthan, India.

Address of Correspondence

Dr. Sudhanshu Bansal,
Consultant, Paediatric Orthopaedic Surgeon, CODS Clinic, Ludhiana, Amandeep Hospital, Amritsar, Punjab, India.
E-mail: drbansalsudhanshu@gmail.com


Abstract

Deformity correction is a fundamental aspect of orthopedic surgery, requiring a precise radiological assessment and systematic planning. This article provides an indepth overview of the radiological modalities available for deformity assessment, including X-rays, scannograms, computed tomography (CT), and magnetic resonance imaging (MRI). Proper radiographic techniques, such as standing fulllength X-rays and scannograms, are critical for accurate limb alignment assessment. Advanced imaging modalities, including CT and MRI, are necessary in cases of complex deformities or rotational abnormalities. Furthermore, various software applications are available for preoperative deformity planning, enabling precise correction strategies. This article also addresses approaches for managing deformities in limited-resource settings, emphasizing cost-effective and accessible imaging techniques. The objective is to enhance clinical decisionmaking and optimize surgical outcomes in deformity management.
Keywords: Alignment, Anatomic tibiofemoral angle, Deformity, Knee, Lower limb alignment, Mechanical axis angle, Radiography


References

1. Sabharwal, S.; Zhao, C.; McKeon, J.; Melaghari, T.; Blacksin, M.; Wenekor, C. Reliability analysis for radiographic measurement of limb length discrepancy: Full-length standing anteroposterior radiograph versus scanogram. J. Pediatr. Orthop. 2006, 27, 46–50.
2. Sheehy, L.; Cooke, T.D.V. Radiographic assessment of leg alignment and grading of knee osteoarthritis: A critical review. World J. Rheumatol. 2015, 5, 69–81. 
3. Marques Luís, N.; Varatojo, R. Radiological assessment of lower limb alignment. EFORT Open Rev. 2021, 6, 487–494.
4. Paley, D. Radiographic assessment of lower limb deformities. In Principles of Deformity Correction; Paley, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 31–60.
5. Zampogna, B.; Vasta, S.; Amendola, A.; Uribe-Echevarria Marbach, B.; Gao, Y.; Papalia, R.; Denaro, V. Assessing Lower Limb Alignment: Comparison of Standard Knee Xray vs Long Leg View. Iowa Orthop. J. 2015, 35, 49–54.
6. Hinterwimmer, S.; Graichen, H.; Vogl, T.J.; Abolmaali, N. An MRI-based technique for assessment of lower extremity deformities-reproducibility, accuracy, and clinical application. Eur. Radiol. 2008, 18, 149–1505.
7. Winter, A.; Ferguson, K.; Syme, B.; McMillan, J.; Holt, G. Pre-operative analysis of lower limb coronal alignment—A comparison of supine MRI versus standing full-length alignment radiographs. Knee 2014, 21, 1084–1087.
8. Zahn, R.K.; Renner, L.; Perka, C.; Hommel, H. Weight-bearing radiography depends on limb loading. Knee Surg. Sport. Traumatol.Arthrosc. 2019, 27, 1470–1476. 
9. Tarassoli, P.; Corban, L.E.; Wood, J.A.; Sergis, A.; Chen, D.B.; MacDessi, S.J. Long leg radiographs underestimate the degree of constitutional varus limb alignment and joint line obliquity in comparison with computed tomography: A radiographic study. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 4755–4765. 
10. Sabharwal, S.; Zhao, C.; Edgar, M. Lower limb alignment in children: Reference values based on a full-length standing radiograph. J. Pediatr. Orthop. 2008, 28, 740–746. 
11. Krackow K. The measurement and analysis of axial deformity at the knee. Mahwah, NJ: Homer Stryker Center, 2008.
12. Solomin, L.N.; Utekhin, A.I.; Vilenskiy, V.A. Reference values of the femur and tibia mechanical axes and angles in the sagittal plane, determined on the basis of three-dimensional modeling. J. Limb Lengthen Reconstr. 2020, 6, 116–120. 
13. Guggenberger, R.; Pfirrmann, C.W.; Koch, P.P.; Buck, F.M. Assessment of lower limb length and alignment by biplanar linear radiography: Comparison with supine CT and upright fulllength radiography. AJR Am. J. Roentgenol. 2014, 202, W161–W167 
14. Fürmetz, J.; Sass, J.; Ferreira, T.; Jalali, J.; Kovacs, L.; Mück, F.; Degen, N.; Thaller, P.H. Three-dimensional assessment of lower limb alignment: Accuracy and reliability. Knee 2019, 26, 185–193. 
15. Ahrend, M.D.; Baumgartner, H.; Ihle, C.; Histing, T.; Schröter, S.; Finger, F. Influence of axial limb rotation on radiographic lower limb alignment: A systematic review. Arch. Orthop. Trauma Surg. 2022, 142, 3349–3366. 
16. Buck FM, Guggenberger R, Koch pp, Pfirrmann CWA. Femoral and tibial torsion measurements with 3D models based on low-dose biplanar radiographs in comparison with standard CT measurements. AJR Am J Roentgenol 2012;199:W607–W612.
17. Kuiper, R.J.A.; Seevinck, P.R.; Viergever, M.A.; Weinans, H.; Sakkers, R.J.B. Automatic Assessment of Lower-Limb Alignment from Computed Tomography. J. Bone Jt. Surg. Am. 2023, 105, 700–712. 
18. Simon, S.; Schwarz, G.M.; Aichmair, A.; Frank, B.J.H.; Hummer, A.; DiFranco, M.D.; Dominkus, M.; Hofstaetter, J.G. Fully automated deep learning for knee alignment assessment in lower extremity radiographs: A cross-sectional diagnostic study. Skeletal Radiol. 2022, 51, 1249– 1259. 


How to Cite this Article:  Bansal S, Gupta G, Khurana D | Radiological Assessment and Planning of Deformities | International Journal of Paediatric Orthopaedics | May-August 2024; 10(2): 12-17. https://doi.org/10.13107/ijpo.2024.v10.i02.184

(Article Text HTML)      (Full Text PDF)


Basics of Paediatric Limb Reconstruction Surgeries

Volume 10 | Issue 2 | May-August 2024 | Page: 2-11 | Prateek Rastogi, Nitish Arora, Yogesh Patel 

DOI- https://doi.org/10.13107/ijpo.2024.v10.i02.182

Submitted: 18/05/2024; Reviewed: 14/06/2024; Accepted: 19/07/2024; Published: 10/08/2024


Authors: Prateek Rastogi MS Ortho [1], Nitish Arora MS Ortho [2], Yogesh Patel MS Ortho [3]

[1] Department of Orthopaedics, Sharda Hospital, Greater Noida, Uttar Pradesh, India.
[2] Department of Orthopaedics, Medicover Hospital, Khargar, Navi Mumbai, Maharashtra, India.
[3] Department of Orthopaedics, Sagar Multispeciality Hospital, Bhopal, Madhya Pradesh, India.

Address of Correspondence

Dr. Prateek Rastogi,
Paediatric Orthopaedics and Limb Reconstruction Surgeon, Department of Orthopaedics, Sharda Hospital, Greater Noida, Uttar Pradesh, India.
E-mail: prateek.rastogi12@gmail.com


Abstract

Paediatric limb reconstruction surgeries play a pivotal role in managing congenital and acquired deformities, limb length discrepancies, and complex musculoskeletal disorders in children. These procedures aim to restore alignment, function, and length while preserving growth potential and minimizing long-term disability. Unlike adult cases, paediatric reconstructions demand unique considerations due to ongoing skeletal development, necessitating precise planning to avoid growth plate damage. This review outlines the evolving indications for reconstruction—including congenital conditions like various hemimelia and bony deficiency, as well as acquired deformities from trauma, infection, and tumors. Foundational principles such as anatomical and mechanical axes and their deviation, CORA (Center of Rotation of Angulation), and ACA (Angulation Correction Axis) are discussed alongside osteotomy planning and execution. Techniques of gradual deformity correction such as growth modulation, and distraction osteogenesis are examined in depth, highlighting the roles of devices like Ilizarov fixators, hexapods, and intramedullary lengthening nails. Recent advancements in imaging, surgical planning, and implant design have significantly improved outcomes, although complications such as joint stiffness, infection, and secondary deformities persist. With increasing precision and a growing array of tools, paediatric limb reconstruction continues to evolve, offering promising outcomes and functional restoration to affected children.
Keywords: Paediatric limb reconstruction, Deformity Correction, Limb Lengthening, Growth Modulation, Distraction Osteogenesis, Osteotomy Techniques


References

1. Hosny GA. Limb lengthening history, evolution, complications and current concepts. J Orthop Traumatol. 2020;21(1):3. doi:10.1186/s10195-019-0541-3
2. Greenberg LA. Genu Varum and Genu Valgum: Another Look. Am J Dis Child. 1971;121(3):219. doi:10.1001/archpedi.1971.02100140085006
3. Kim TG, Park MS, Lee SH, et al. Leg-length discrepancy and associated risk factors after paediatric femur shaft fracture: A multicentre study. Journal of Children’s Orthopaedics. 2021;15(3):215-222. doi:10.1302/1863-2548.15.200252
4. Popkov A, Dučić S, Lazović M, Lascombes P, Popkov D. Limb lengthening and deformity correction in children with abnormal bone. Injury. 2019;50:S79-S86. doi:10.1016/j.injury.2019.03.045
5. Nasto LA, Coppa V, Riganti S, et al. Clinical results and complication rates of lower limb lengthening in paediatric patients using the PRECICE 2 intramedullary magnetic nail: a multicentre study. Journal of Pediatric Orthopaedics B. 2020;29(6):611-617. doi:10.1097/BPB.0000000000000651
6. Radler C, Calder P, Eidelman M, et al. What’s new in pediatric lower limb reconstruction? Journal of Children’s Orthopaedics. 2024;18(4):349-359. doi:10.1177/18632521241258351
7. Calder PR, Faimali M, Goodier WD. The role of external fixation in paediatric limb lengthening and deformity correction. Injury. 2019;50:S18-S23. doi:10.1016/j.injury.2019.03.049
8. Guarniero R, Barros Júnior TE. Femoral lengthening by the Wagner method. Clin Orthop Relat Res. 1990;(250):154-159.
9. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res. 1989;(238):249-281.
10. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction. Clin Orthop Relat Res. 1989;(239):263-285.
11. Socci AR, Horn D, Fornari ED, Lakra A, Schulz JF, Sharkey MS. What’s New in Pediatric Limb Lengthening and Deformity Correction? Journal of Pediatric Orthopaedics. 2020;40(7):e598-e602. doi:10.1097/BPO.0000000000001456
12. Boero S, Riganti S, Marrè Brunenghi G, Nasto LA. Hexapod External Fixators in Paediatric Deformities. In: Massobrio M, Mora R, eds. Hexapod External Fixator Systems. Springer International Publishing; 2021:133-152. doi:10.1007/978-3-030-40667-7_8
13. Georgiadis AG, Rossow JK, Laine JC, Iobst CA, Dahl MT. Plate-assisted Lengthening of the Femur and Tibia in Pediatric Patients. Journal of Pediatric Orthopaedics. 2017;37(7):473-478. doi:10.1097/BPO.0000000000000645
14. Iobst C. Advances in Pediatric Limb Lengthening: Part 1. JBJS Rev. 2015;3(8). doi:10.2106/JBJS.RVW.N.00101
15. Iobst C. Advances in Pediatric Limb Lengthening: Part 2. JBJS Rev. 2015;3(9). doi:10.2106/JBJS.RVW.N.00102
16. Paley D. Problems, obstacles, and complications of limb lengthening by the Ilizarov technique. Clin Orthop Relat Res. 1990;(250):81-104.
17. Shabtai L, Specht SC, Standard SC, Herzenberg JE. Internal Lengthening Device for Congenital Femoral Deficiency and Fibular Hemimelia. Clin Orthop Relat Res. 2014;472(12):3860-3868. doi:10.1007/s11999-014-3572-3
18. Fuller CB, Shannon CE, Paley D. Lengthening Reconstruction Surgery for Fibular Hemimelia: A Review. Children (Basel). 2021;8(6):467. doi:10.3390/children8060467
19. Chong DY, Paley D. Deformity Reconstruction Surgery for Tibial Hemimelia. Children (Basel). 2021;8(6):461. doi:10.3390/children8060461
20. Paley D. Paley Cross-Union Protocol for Treatment of Congenital Pseudarthrosis of the Tibia. Operative Techniques in Orthopaedics. 2021;31(2):100881. doi:10.1016/j.oto.2021.100881
21. Gaber K, Mir B, Shehab M, Kishta W. Updates in the Surgical Management of Recurrent Clubfoot Deformity: a Scoping Review. Curr Rev Musculoskelet Med. 2022;15(2):75-81. doi:10.1007/s12178-022-09739-6
22. Qin S, Zang J, Wang Y, Jiao S, Qin X, Pan Q. Traumatic Sequelae of Lower Limb. In: Qin S, Zang J, Jiao S, Pan Q, eds. Lower Limb Deformities. Springer Singapore; 2020:433-470. doi:10.1007/978-981-13-9604-5_10
23. Belthur MV, Esparza M, Fernandes JA, Chaudhary MM. Post Infective Deformities: Strategies for Limb Reconstruction. In: Belthur MV, Ranade AS, Herman MJ, Fernandes JA, eds. Pediatric Musculoskeletal Infections. Springer International Publishing; 2022:411-493. doi:10.1007/978-3-030-95794-0_23
24. Nagarajan R, Neglia JP, Clohisy DR, Robison LL. Limb Salvage and Amputation in Survivors of Pediatric Lower-Extremity Bone Tumors: What Are the Long-Term Implications? JCO. 2002;20(22):4493-4501. doi:10.1200/JCO.2002.09.006
25. Chan G, Miller F. Assessment and Treatment of Children with Cerebral Palsy. Orthopedic Clinics of North America. 2014;45(3):313-325. doi:10.1016/j.ocl.2014.03.003
26. Lamm BM, Paley D. Deformity correction planning for hindfoot, ankle, and lower limb. Clinics in Podiatric Medicine and Surgery. 2004;21(3):305-326. doi:10.1016/j.cpm.2004.04.004
27. Çakmak M, Şen C, Eralp L, Balci HI, Civan M, eds. Basic Techniques for Extremity Reconstruction. Springer International Publishing; 2018. doi:10.1007/978-3-319-45675-1
28. Paley D, Herzenberg JE, Tetsworth K, McKie J, Bhave A. Deformity Planning for Frontal and Sagittal Plane Corrective Osteotomies. Orthopedic Clinics of North America. 1994;25(3):425-465. doi:10.1016/S0030-5898(20)31927-1
29. Paley D. Principles of Deformity Correction. Springer Berlin Heidelberg; 2002. doi:10.1007/978-3-642-59373-4
30. Farr S, Mindler G, Ganger R, Girsch W. Bone Lengthening in the Pediatric Upper Extremity. The Journal of Bone and Joint Surgery. 2016;98(17):1490-1503. doi:10.2106/JBJS.16.00007
31. Thomas A, Round J. Basic principles of lower limb deformity correction. Surgery (Oxford). 2023;41(4):255-261. doi:10.1016/j.mpsur.2023.02.015
32. Madhuri V, Reddy J. Acute Deformity Correction Using an Osteotomy. In: Sabharwal S, Iobst CA, eds. Pediatric Lower Limb Deformities. Springer International Publishing; 2024:117-150. doi:10.1007/978-3-031-55767-5_8
33. Hubbard EW, Cherkashin A, Samchukov M, Podeszwa D. The Evolution of Guided Growth for Lower Extremity Angular Correction. Journal of the Pediatric Orthopaedic Society of North America. 2023;5(3):738. doi:10.55275/JPOSNA-2023-738
34. Metaizeau JD, Denis D, Louis D. New femoral derotation technique based on guided growth in children. Orthopaedics & Traumatology: Surgery & Research. 2019;105(6):1175-1179. doi:10.1016/j.otsr.2019.06.005
35. Horn J, Steen H, Huhnstock S, Hvid I, Gunderson RB. Limb lengthening and deformity correction of congenital and acquired deformities in children using the Taylor Spatial Frame. Acta Orthopaedica. 2017;88(3):334-340. doi:10.1080/17453674.2017.1295706
36. Karpinski MR, Newton G, Henry AP. The results and morbidity of varus osteotomy for Perthes’ disease. Clin Orthop Relat Res. 1986;(209):30-40.
37. Kanaujia RR, Ikuta Y, Muneshige H, Higaki T, Shimogaki K. Dome osteotomy for cubitus varus in children. Acta Orthopaedica Scandinavica. 1988;59(3):314-317. doi:10.3109/17453678809149371
38. Nelitz M. Femoral Derotational Osteotomies. Curr Rev Musculoskelet Med. 2018;11(2):272-279. doi:10.1007/s12178-018-9483-2
39. Tennant JN, Carmont M, Phisitkul P. Calcaneus osteotomy. Curr Rev Musculoskelet Med. 2014;7(4):271-276. doi:10.1007/s12178-014-9237-8.


How to Cite this Article:  Rastogi P, Arora N, Patel Y| Basics of Paediatric Limb Reconstruction Surgeries| International Journal of Paediatric Orthopaedics | May-August 2024; 10(2): 02-11. https://doi.org/10.13107/ijpo.2024.v10.i02.182

(Article Text HTML)      (Full Text PDF)


Editorial

Volume 10 | Issue 2 | May-August 2024 | Page: 01 | Jayanth S. Sampath

DOI- https://doi.org/10.13107/ijpo.2024.v10.i02.180


Authors: Jayanth S. Sampath FRCSEd (Tr & Orth) [1]

[1] Department of Orthopaedics, Rainbow Children’s Hospital, Bangalore, Karnataka, India.

Address of Correspondence

Dr. Jayanth S. Sampath,
Rainbow Children’s Hospital, Bangalore, Karnataka, India.
E-mail: editor.posi.ijpo@gmail.com


Editorial

Limb reconstruction surgery in children has evolved into the treatment of choice for complex deformities of the limb and foot. The power of gradual correction with stable fixation devices of varying complexity have overcome the limitations of traditional open surgery. It is an important and potent skill in the hands of the paediatric orthopaedic surgeon.
This issue of IJPO presents an overview of the principles and practice in modern limb reconstruction surgery. We start with an article on basic deformity correction principles followed by a detailed description of radiological assessment of deformity. The subsequent articles provide a comprehensive overview of the management of Blount disease, hip instability, complex foot deformities, arthrogryposis and limb deficiencies. We are proud that the authors are from institutions across the world, each offering a unique perspective to the management of these difficult problems. Please share the articles with your trainees and fellows. IJPO issues are easily downloadable free of charge and in full-text format from our website www.ijpoonline.com
We invite your suggestions and comments for any improvements to the journal. Kindly write to us editor.ijpo@gmail.com or editor@posi.org.in
It is my pleasure to acknowledge the contributions of authors, reviewers, editors, and the backend team who have been instrumental in bringing out this issue. The cover page artwork by Dr Easwar T R, POSI Webmaster illustrates the correction of a child with tibia vara using an external fixator. It emphasises that the most successful treatments in our armamentarium are not necessarily complicated but are based on a firm understanding of the pathological anatomy of deformity and the application of a standardised method in practice.

Sincerely


Dr Jayanth S Sampath
Editor,

International Journal of Paediatric Orthopaedics

 

 


How to Cite this Article:  Sampat JS | Editorial | International Journal of Paediatric Orthopaedics | May-August 2024;10(2): 01. https://doi.org/10.13107/ijpo.2024.v10.i02.180

(Article Text HTML)      (Full Text PDF)


Management of Hip Instability in Children

Volume 10 | Issue 2 | May-August 2024 | Page: 18-23 | Parmanand Gupta, Deepak Kumar

DOI- https://doi.org/10.13107/ijpo.2024.v10.i02.186

Submitted: 02/06/2024; Reviewed: 26/06/2024; Accepted: 16/07/2024; Published: 10/08/2024


Authors: Parmanand Gupta MS Ortho [1], Deepak Kumar MS Ortho [1]

[1] Department of Orthopaedics, Government Medical College and Hospital, Chandigarh, India.

Address of Correspondence

Dr. Parmanand Gupta,
Department of Orthopaedics, Government Medical College and Hospital, Chandigarh, India.
E-mail: drpgupta123@gmail.com


Abstract

Post septic resorption and neglected hip dislocation due to hip dysplasia are the common causes of hip instability in children. The goal in such cases is to create a joint which is stable, painless and mobile hip and mimics the function of the original hip. Hip arthrodesis takes away the mobility of the hip whereas excision arthroplasty of the femoral head only addresses pain but not instability. Pelvic Support Osteotomy overcomes these limitations and addresses pain, instability as well as limp. A big drawback of this procedure remains failure to address limb length discrepancy as well as valgus at the knee. Adding a second osteotomy to the distal femoral shaft region addresses the problem of shortening as well as valgus malalignment of the limb resulting from the pelvic support osteotomy component. This procedure should preferably be performed in a child older than 12 years as doing it prior to this age often results in remodeling at the osteotomy site, thereby leading to less than optimal results with passage of time.
Keywords: Hip instability, Pelvic support osteotomy, Ilizarov HipConstruction


References

1. Garrett JC, Epstein HC, Harris WH, Harvey JP Jr, Nickel VL. Treatment of unreduced traumatic posterior dislocations of the hip. J Bone Joint Surg Am. 1979 Jan;61(1):2-6. PMID: 759430.
2. Hartofilakidis G, Stamos K, Karachalios T, Ioannidis TT, Zacharakis N (1996) Congenital hip disease in adults. Classification of acetabular deficiencies and operative treatment with acetabuloplasty combined with total hip arthroplasty. J Bone Joint Surg Am 78:683–692
3. Vaquero-Picado A, Gonzalez-Moran G, Garay EG, Moraleda L (2019) Developmental dysplasia of the hip: update of management. Efort Open Rev 4:548–556
4. Hougaard K, Thomsen PB (1988) Traumatic posterior fracture–dislocation of the hip with fracture of the femoral head or neck, or both. J Bone Joint Surg Am 70:233–239
5. Kim Y-J, Mamisch TC, editors. Hip magnetic resonance imaging. New York, NY: Springer; 2016.
6. Choi IH, Shin YW, Chung CY, et al. Surgical treatment of the severe sequelae of infantile septic arthritis of the hip. Clin Orthop Relat Res. 2005;434:102–109.
7. MacKenzie JR, Kelley SS, Johnston RC (1996) Total hip replacement for coxarthrosis secondary to congenital dysplasia and dislocation of the hip Long-term results. J Bone Joint Surg Am 78(1):55–61
8. Hallel T, Salvati EA. Septic arthritis of the hip in infancy: end result study. Clin Orthop. 1978;132:115-28.
9. Milch H (1941) The ‘pelvic support’ osteotomy. J Bone Joint Surg Am 23(3):581–595
10. Kadykalo OA, Kuftyev LM. Some biomechanical principles of the hip reconstruction with defect on head and neck of the femur by Ilizarov method. The Value of General Biological Patterns in Regeneration Tissue Opened by G.A. Ilizarov. Kurgan All-Union Scientific Center: Rehabilitation Traumatology and Orthopaedics; 1988:124–129.
11. Rozbruch SR, Paley D, Bhave A, et al. Ilizarov hip reconstruction for the late sequelae of infantile hip infection. J Bone Joint Surg Am. 2005;87-A:1007–1018.
12. Krieg AH, Lenze U, Hasler CC. Ilizarov hip reconstruction without external fixation: a new technique. J Child Orthop. 2010;4(3):259-266.
13. Pafilas D, Nayagam S. The pelvic support osteotomy: indications and preoperative planning. Strategies trauma limb reconstruction.2008;3(2):83-92.
14. Saleh M, Milne A (1994) Weight-bearing parallel-beam scenography for the measurement of leg length and joint alignment. J Bone Joint Surg Br 76(1):156–157
15. Choi IH, Cho TJ, Yoo WJ, Shin CH. Recurrent dislocations and complete necrosis: the role of pelvic support osteotomy. J Pediatr Orthop. 2013 Jul-Aug;33 Suppl 1:S45-55
16. Paley D. Hip joint considerations. Principles of Deformity Correction. Heidelberg: Springer-Verlag; 2002:647–694.
17. Hosny GA, Ahmed A. Is arthroplasty inevitable after Ilizarov hip reconstruction of unstable hip joints in adolescents and young adults? Long-Term Evaluation of 136 Cases. Genij Ortopedii, Vol. 27 (3), 2021.
18. Sabharwal S, Macleod R. Ilizarov hip reconstruction for the management of advanced osteonecrosis in an adolescent with leukemia. J Pediatr Orthop B. 2012;21:252–259.
19. El-Mowafi H. Outcome of pelvic support osteotomy with the Ilizarov method in the treatment of the unstable hip joint. Acta Orthop Belg. 2005 Dec;71(6):686-91.
20. Huang Y, Xie H, Yi J, Yang M, Kong X, Chai W. Is PSO suitable for high riding dysplasias? Int Orthop. 2024 Apr 15.
21. Shetty GM, Song HR, Lee SH, Kim TY. Bilateral valgus-extension osteotomy of hip using hybrid external fixator in spondyloepiphyseal dysplasia: early results of a salvage procedure. J Pediatr Orthop B. 2008 Jan;17(1):21-5.


How to Cite this Article:  Gupta P, Kumar D | Management of Hip Instability in Children| International Journal of Paediatric Orthopaedics | May-August 2024; 10(2): 18-23. https://doi.org/10.13107/ijpo.2024.v10.i02.186

(Article Text HTML)      (Full Text PDF)