Tag Archive for: Knee

Radiological Assessment and Planning of Deformities

Volume 10 | Issue 2 | May-August 2024 | Page: 12-17 | Sudhanshu Bansal, Gaurav Gupta, Deepak Khurana 

DOI- https://doi.org/10.13107/ijpo.2024.v10.i02.184

Submitted: 05/03/2024; Reviewed: 02/04/2024; Accepted: 15/05/2024; Published: 10/08/2024


Authors: Sudhanshu Bansal MS Ortho [1], Gaurav Gupta MS Ortho [2], Deepak Khurana MS Ortho [3]

[1] Department of Paediatric Orthopaedic Surgery, CODS Clinic, Ludhiana, Amandeep Hospital, Amritsar, Punjab, India.
[2] Department of Paediatric Orthopaedic Surgery, Child Ortho Clinic, Delhi-NCR, India.
[3] Department of Paediatric Orthopaedic Surgery, JCPODS, Jeevan Rekha hospital, Jaipur, Rajasthan, India.

Address of Correspondence

Dr. Sudhanshu Bansal,
Consultant, Paediatric Orthopaedic Surgeon, CODS Clinic, Ludhiana, Amandeep Hospital, Amritsar, Punjab, India.
E-mail: drbansalsudhanshu@gmail.com


Abstract

Deformity correction is a fundamental aspect of orthopedic surgery, requiring a precise radiological assessment and systematic planning. This article provides an indepth overview of the radiological modalities available for deformity assessment, including X-rays, scannograms, computed tomography (CT), and magnetic resonance imaging (MRI). Proper radiographic techniques, such as standing fulllength X-rays and scannograms, are critical for accurate limb alignment assessment. Advanced imaging modalities, including CT and MRI, are necessary in cases of complex deformities or rotational abnormalities. Furthermore, various software applications are available for preoperative deformity planning, enabling precise correction strategies. This article also addresses approaches for managing deformities in limited-resource settings, emphasizing cost-effective and accessible imaging techniques. The objective is to enhance clinical decisionmaking and optimize surgical outcomes in deformity management.
Keywords: Alignment, Anatomic tibiofemoral angle, Deformity, Knee, Lower limb alignment, Mechanical axis angle, Radiography


References

1. Sabharwal, S.; Zhao, C.; McKeon, J.; Melaghari, T.; Blacksin, M.; Wenekor, C. Reliability analysis for radiographic measurement of limb length discrepancy: Full-length standing anteroposterior radiograph versus scanogram. J. Pediatr. Orthop. 2006, 27, 46–50.
2. Sheehy, L.; Cooke, T.D.V. Radiographic assessment of leg alignment and grading of knee osteoarthritis: A critical review. World J. Rheumatol. 2015, 5, 69–81. 
3. Marques Luís, N.; Varatojo, R. Radiological assessment of lower limb alignment. EFORT Open Rev. 2021, 6, 487–494.
4. Paley, D. Radiographic assessment of lower limb deformities. In Principles of Deformity Correction; Paley, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 31–60.
5. Zampogna, B.; Vasta, S.; Amendola, A.; Uribe-Echevarria Marbach, B.; Gao, Y.; Papalia, R.; Denaro, V. Assessing Lower Limb Alignment: Comparison of Standard Knee Xray vs Long Leg View. Iowa Orthop. J. 2015, 35, 49–54.
6. Hinterwimmer, S.; Graichen, H.; Vogl, T.J.; Abolmaali, N. An MRI-based technique for assessment of lower extremity deformities-reproducibility, accuracy, and clinical application. Eur. Radiol. 2008, 18, 149–1505.
7. Winter, A.; Ferguson, K.; Syme, B.; McMillan, J.; Holt, G. Pre-operative analysis of lower limb coronal alignment—A comparison of supine MRI versus standing full-length alignment radiographs. Knee 2014, 21, 1084–1087.
8. Zahn, R.K.; Renner, L.; Perka, C.; Hommel, H. Weight-bearing radiography depends on limb loading. Knee Surg. Sport. Traumatol.Arthrosc. 2019, 27, 1470–1476. 
9. Tarassoli, P.; Corban, L.E.; Wood, J.A.; Sergis, A.; Chen, D.B.; MacDessi, S.J. Long leg radiographs underestimate the degree of constitutional varus limb alignment and joint line obliquity in comparison with computed tomography: A radiographic study. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 4755–4765. 
10. Sabharwal, S.; Zhao, C.; Edgar, M. Lower limb alignment in children: Reference values based on a full-length standing radiograph. J. Pediatr. Orthop. 2008, 28, 740–746. 
11. Krackow K. The measurement and analysis of axial deformity at the knee. Mahwah, NJ: Homer Stryker Center, 2008.
12. Solomin, L.N.; Utekhin, A.I.; Vilenskiy, V.A. Reference values of the femur and tibia mechanical axes and angles in the sagittal plane, determined on the basis of three-dimensional modeling. J. Limb Lengthen Reconstr. 2020, 6, 116–120. 
13. Guggenberger, R.; Pfirrmann, C.W.; Koch, P.P.; Buck, F.M. Assessment of lower limb length and alignment by biplanar linear radiography: Comparison with supine CT and upright fulllength radiography. AJR Am. J. Roentgenol. 2014, 202, W161–W167 
14. Fürmetz, J.; Sass, J.; Ferreira, T.; Jalali, J.; Kovacs, L.; Mück, F.; Degen, N.; Thaller, P.H. Three-dimensional assessment of lower limb alignment: Accuracy and reliability. Knee 2019, 26, 185–193. 
15. Ahrend, M.D.; Baumgartner, H.; Ihle, C.; Histing, T.; Schröter, S.; Finger, F. Influence of axial limb rotation on radiographic lower limb alignment: A systematic review. Arch. Orthop. Trauma Surg. 2022, 142, 3349–3366. 
16. Buck FM, Guggenberger R, Koch pp, Pfirrmann CWA. Femoral and tibial torsion measurements with 3D models based on low-dose biplanar radiographs in comparison with standard CT measurements. AJR Am J Roentgenol 2012;199:W607–W612.
17. Kuiper, R.J.A.; Seevinck, P.R.; Viergever, M.A.; Weinans, H.; Sakkers, R.J.B. Automatic Assessment of Lower-Limb Alignment from Computed Tomography. J. Bone Jt. Surg. Am. 2023, 105, 700–712. 
18. Simon, S.; Schwarz, G.M.; Aichmair, A.; Frank, B.J.H.; Hummer, A.; DiFranco, M.D.; Dominkus, M.; Hofstaetter, J.G. Fully automated deep learning for knee alignment assessment in lower extremity radiographs: A cross-sectional diagnostic study. Skeletal Radiol. 2022, 51, 1249– 1259. 


How to Cite this Article:  Bansal S, Gupta G, Khurana D | Radiological Assessment and Planning of Deformities | International Journal of Paediatric Orthopaedics | May-August 2024; 10(2): 12-17. https://doi.org/10.13107/ijpo.2024.v10.i02.184

(Article Text HTML)      (Full Text PDF)


Specific Anatomical Patterns of Septic Sequelae of Knee in Children: Possibility of a Vascular Etiopathogenesis

Volume 8 | Issue 3 | September-December 2022 | Page: 16-21| Anil Agarwal

DOI- https://doi.org/10.13107/ijpo.2022.v08.i03.145


Authors: Anil Agarwal [1] MS Ortho.

[1] Department of Paediatric Orthopaedics, Chacha Nehru Bal Chikitsalaya, Geeta Colony, Delhi, India.

Address of Correspondence
Dr. Anil Agarwal,
Department of Paediatric Orthopaedics, Chacha Nehru Bal Chikitsalaya, Geeta Colony, Delhi, India.
E-mail: anilrachna@gmail.com


Abstract

Background: The septic sequelae of knee following infantile infection is scantily described in literature. This case series depicts the various anatomical zones affected, the radiological presentation and proposes a vascular hypothesis for the sequelae.
Methods and results: Sequelae presented with three distinct radiological findings namely, unicondylar loss of lateral distal femur (n=4), hemicondylar loss of anterior portion of proximal tibia (n=3), and epiphyseal overgrowth and deficient tibial metaphysis of medial/ lateral side (n=4). The anatomical zones for above findings were seen approximately matching with the supply of specific genicular arteries around knee. On corroborating the early post infective radiographs and the sequelae radiographs, it was found that most patients had concomitant osteomyelitis, sometimes extensive.
Conclusions: We could recognize three distinct anatomical patterns of septic sequelae of knee following osteoarticular knee infection in infancy. An ischemic etiopathogenesis is suggested based on consistent radiological findings and the vascular supply zones. Most cases followed concomitant occurrence of septic arthritis and extensive osteomyelitis.
Keywords: Knee, Sepsis, Sequelae, Ischemia, Infants


References

1. Agarwal A, Aggarwal AN. Acute hematogenous osteomyelitis. In: Agarwal A, Aggarwal AN, editors. Pediatric osteoarticular infections. Delhi: Jaypee; 2014. p. 93-106.
2. Peterson HA. Physeal injury other than fracture. Heidelberg Dordrecht London New York: Springer; 2012.
3. Langenskiöld A. Growth disturbance after osteomyelitis of femoral condyles in infants. Acta Orthop Scand. 1984;55:1-13.
4. Morsy M, Sur YJ, Akdag O, Eisa A, El-Gammal TA, Lachman N, Moran SL. Anatomic and high-resolution computed tomographic angiography study of the lateral femoral condyle flap: Implications for surgical dissection. J Plast Reconstr Aesthet Surg. 2018;71:33-43.
5. Scapinelli R. Studies on the vasculature of the human knee joint. Acta Anat (Basel). 1968;70:305-31.
6. Wirth T, Syed Ali MM, Rauer C, Süss D, Griss P, Syed Ali S. The blood supply of the growth plate and the epiphysis: a comparative scanning electron microscopy and histological experimental study in growing sheep. Calcif Tissue Int. 2002;70:312-9.
7. Damsin JP, Zambelli JY, Ma R, Roume J, Colonna F, Hannoun L. Study of the arterial vascularisation of the medial tibial condyle in the fetus. Surg Radiol Anat. 1995;17:13-7.
8. Hannouche D, Duparc F, Beaufils P. The arterial vascularization of the lateral tibial condyle: anatomy and surgical applications. Surg Radiol Anat. 2006;28:38-45.
9. Gutiérrez Carbonell P, Ruiz Piñana E, Valiente Valero JM. Intracapsular pressure in children with septic arthritis of the hip. J Pediatr Orthop B. 2021;30:80-4.
10. Kwack KS, Cho JH, Lee JH, Cho JH, Oh KK, Kim SY. Septic arthritis versus transient synovitis of the hip: gadolinium-enhanced MRI finding of decreased perfusion at the femoral epiphysis. AJR Am J Roentgenol. 2007;189:437-45.
11. Vidigal Júnior EC, Vidigal EC, Fernandes JL. Avascular necrosis as a complication of septic arthritis of the hip in children. Int Orthop. 1997;21:389-92.
12. Agarwal A, Rastogi P. Septic sequelae of hip in children: long-term clinicoradiological outcome study. J Pediatr Orthop B. 2021;30:563-71.
13. Wong VW, Bürger HK, Iorio ML, Higgins JP. Lateral femoral condyle flap: an alternative source of vascularized bone from the distal femur. J Hand Surg Am. 2015;40:1972-80.
14. Parvizi D, Vasilyeva A, Wurzer P, Tuca A, Lebo P, Winter R, et al. Anatomy of the vascularized lateral femoral condyle flap. Plast Reconstr Surg. 2016;137:1024e-1032e.
15. Hall RM. Regeneration of the lower femoral epiphysis; report of a case. J Bone Joint Surg Br. 1954;36:116-7.
16. Lloyd-Roberts GC. Suppurative arthritis of infancy. Some observations upon prognosis and management. J Bone Joint Surg Br. 1960;42:706-20.
17. Roberts PH. Disturbed epiphysial growth at the knee after osteomyelitis in infancy. J Bone Joint Surg Br. 1970;52:692-703.
18. Vizkelety TL. Partial destruction of the distal femoral epiphysis as a consequence of osteomyelitis: regeneration after transplantation of a bone graft. J Pediatr Orthop. 1985;5:731-3.
19. Singson RD, Berdon WE, Feldman F, Denton JR, Abramson S, Baker DH. “Missing” femoral condyle: an unusual sequela to neonatal osteomyelitis and septic arthritis. Radiology. 1986;161:359-61.
20. Tercier S, Siddesh ND, Shah H, Girisha KM, Joseph B. Loss of a condyle of the femur or tibia following septic arthritis in infancy: problems of management and testing of a hypothesis of pathogenesis. J Child Orthop. 2012;6:319-25.
21. Strong M, Lejman T, Michno P, Hayman M. Sequelae from septic arthritis of the knee during the first two years of life. J Pediatr Orthop. 1994;14:745-51.
22. O’Grady A, Welsh L, Gibson M, Briggs J, Speirs A, Little M. Cadaveric and angiographic anatomical considerations in the genicular arterial system: implications for genicular artery embolisation in patients with knee osteoarthritis. Cardiovasc Intervent Radiol. 2022;45:80-90.
23. Montgomery CO, Siegel E, Blasier RD, Suva LJ. Concurrent septic arthritis and osteomyelitis in children. J Pediatr Orthop. 2013;33:464-7.
24. Perlman MH, Patzakis MJ, Kumar PJ, Holtom P. The incidence of joint involvement with adjacent osteomyelitis in pediatric patients. J Pediatr Orthop. 2000;20:40-3.


How to Cite this Article: Agarwal A | Specific Anatomical Patterns of Septic Sequelae of Knee in Children: Possibility of a Vascular Etiopathogenesis | International Journal of Paediatric Orthopaedics | September-December 2022; 8(3): 16-21 | https://doi.org/10.13107/ijpo.2022.v08.i03.145

(Article Text HTML)      (Full Text PDF)