Lower Limb Deformity Management in Arthrogryposis – What to Correct and When

Volume 10 | Issue 2 | May-August 2024 | Page: 40-47 | Ishani P Shah, Sujika Ranmuthuge, Varun Parnami, Anastasios Chytas 

DOI- https://doi.org/10.13107/ijpo.2024.v10.i02.192

Submitted: 18/05/2024; Reviewed: 06/06/2024; Accepted: 16/07/2024; Published: 10/08/2024


Authors: Ishani P Shah DNB Ortho. FRCS (T & O) [1], Sujika Ranmuthuge MD, FRCS (T & O) [1], Varun Parnami DNB Ortho. [1], Anastasios Chytas MD, MSc [1]

[1] Department of Paediatric Orthopaedic Surgery, Royal Manchester Children’s Hospital, Oxford Road, M13 9WL

Address of Correspondence

Dr. Ishani P Shah,
Consultant Paediatric Orthopaedic Surgeon, Royal Manchester Children’s Hospital, Oxford Road, M13 9WL.
E-mail: ishanipshah@gmail.com


Abstract

Arthrogryposis is a descriptive term involving non – progressive joint contractures of two or more joints at birth. It is associated with more than 300 diseases. Lower limb involvement is seen in about 95% of the cases with variable affection of the foot, knee and hip. Management depends on the severity, affection of number of joints and co-morbidities. Multidisciplinary management is crucial with realistic expectations. Prognosis should be discussed with parents prior to undertaking surgical intervention, especially the risk of recurrence as age advances. Deformities include soft tissue contractures, fibrotic hypoplastic muscles and in older children, deformed articular congruity. Foot is most commonly affected and Ponseti casting is the gold standard first line of treatment. Failed correction or late presentations are treated with soft tissue/bony surgery and/or fixator. Knee contractures can be flexion or extension with or without joint subluxation and patella involvement. Options for management are serial casting, soft tissue release, growth modulation, bony surgery, gradual correction with fixator or a combination of these based on the severity and age at presentation. Pterygium management is difficult due to proximity of neurovascular structures to the skin web and higher risk of recurrence. Hip contractures and dislocation when unilateral should be treated surgically. Treatment of bilateral affection is controversial and should be individualised.
Keywords: Arthrogryposis, Amyoplasia, Arthrogryposis multiplex congenita, Hip contracture, Knee contracture, Lower limb deformity, Atypical clubfoot.


References

1. Bevan, W.P., et al., Arthrogryposis multiplex congenita (amyoplasia): an orthopaedic perspective. J Pediatr Orthop, 2007. 27(5): p. 594-600.
2. Hall, J.G., Arthrogryposis multiplex congenita: etiology, genetics, classification, diagnostic approach, and general aspects. J Pediatr Orthop B, 1997. 6(3): p. 159-66.
3. Sells, J.M., K.M. Jaffe, and J.G. Hall, Amyoplasia, the most common type of arthrogryposis: the potential for good outcome. Pediatrics, 1996. 97(2): p. 225-31.
4. Hall, J.G., K.A. Aldinger, and K.I. Tanaka, Amyoplasia revisited. Am J Med Genet A, 2014. 164A(3): p. 700-30.
5. Hansen-Jaumard, D., et al., A review of the orthopedic interventions and functional outcomes among a cohort of 114 children with arthrogryposis multiplex congenita. J Pediatr Rehabil Med, 2020. 13(3): p. 263-271.
6. Swinyard, C.A. and E.E. Bleck, The etiology of arthrogryposis (multiple congenital contracture). Clin Orthop Relat Res, 1985(194): p. 15-29.
7. Ooishi, T., et al., Congenital dislocation of the knee. Its pathologic features and treatment. Clin Orthop Relat Res, 1993(287): p. 187-92.
8. Hoffer, M.M., et al., Ambulation in severe arthrogryposis. J Pediatr Orthop, 1983. 3(3): p. 293-6.
9. Harold J.P. van Bosse, D.A.Z., The Orthopaedic Management of Arthrogryposis Multiplex Congenita. Journal of the Pediatric Orthopaedic Society of North America, 2021. 3(2): p. 277.
10. Carlson, W.O., et al., Arthrogryposis multiplex congenita. A long-term follow-up study. Clin Orthop Relat Res, 1985(194): p. 115-23.
11. Staheli, L.T., et al., Management of hip dislocations in children with arthrogryposis. J Pediatr Orthop, 1987. 7(6): p. 681-5.
12. St Clair, H.S. and S. Zimbler, A plan of management and treatment results in the arthrogrypotic hip. Clin Orthop Relat Res, 1985(194): p. 74-80.
13. Szoke, G., et al., Medial-approach open reduction of hip dislocation in amyoplasia-type arthrogryposis. J Pediatr Orthop, 1996. 16(1): p. 127-30.
14. van Bosse, H.J.P., et al., Treatment of the Lower Extremity Contracture/Deformities. J Pediatr Orthop, 2017. 37 Suppl 1: p. S16-S23.
15. Wada, A., et al., Surgical treatment of hip dislocation in amyoplasia-type arthrogryposis. J Pediatr Orthop B, 2012. 21(5): p. 381-5.
16. Yau, P.W., et al., Twenty-year follow-up of hip problems in arthrogryposis multiplex congenita. J Pediatr Orthop, 2002. 22(3): p. 359-63.
17. Nema, S.K., et al., Open reduction for hip dislocation in children with arthrogryposis multiplex congenital: Outcomes of a systematic review. J Clin Orthop Trauma, 2024. 53: p. 102434.
18. Sarwark, J.F., G.D. MacEwen, and C.I. Scott, Jr., Amyoplasia (a common form of arthrogryposis). J Bone Joint Surg Am, 1990. 72(3): p. 465-9.
19. Miao, M., et al., Early open reduction of dislocated hips using a modified Smith-Petersen approach in arthrogyposis multiplex congenita. BMC Musculoskelet Disord, 2020. 21(1): p. 144.
20. Hamdy, R.C., et al., Treatment and outcomes of arthrogryposis in the lower extremity. Am J Med Genet C Semin Med Genet, 2019. 181(3): p. 372-384.
21. van Bosse, H.J. and R.E. Saldana, Reorientational Proximal Femoral Osteotomies for Arthrogrypotic Hip Contractures. J Bone Joint Surg Am, 2017. 99(1): p. 55-64.
22. Guidera, K.J., et al., Radiographic changes in arthrogrypotic knees. Skeletal Radiol, 1991. 20(3): p. 193-5.
23. Sodergard, J. and S. Ryoppy, The knee in arthrogryposis multiplex congenita. J Pediatr Orthop, 1990. 10(2): p. 177-82.
24. Murray, C. and J.A. Fixsen, Management of knee deformity in classical arthrogryposis multiplex congenita (amyoplasia congenita). J Pediatr Orthop B, 1997. 6(3): p. 186-91.
25. Brunner, R., F. Hefti, and J.D. Tgetgel, Arthrogrypotic joint contracture at the knee and the foot: correction with a circular frame. J Pediatr Orthop B, 1997. 6(3): p. 192-7.
26. Thomas, B., et al., The knee in arthrogryposis. Clin Orthop Relat Res, 1985(194): p. 87-92.
27. Eriksson, M., et al., Gait in children with arthrogryposis multiplex congenita. J Child Orthop, 2010. 4(1): p. 21-31.
28. Palmer, P.M., et al., Passive motion therapy for infants with arthrogryposis. Clin Orthop Relat Res, 1985(194): p. 54-9.
29. Ponten, E., Management of the knees in arthrogryposis. J Child Orthop, 2015. 9(6): p. 465-72.
30. Drummond DS, S.T., Cruess RL, Management of arthrogryposis multiplex congenita. Instr Course Lect, 1974. 23: p. 79-95.
31. Ho, C.A. and L.A. Karol, The utility of knee releases in arthrogryposis. J Pediatr Orthop, 2008. 28(3): p. 307-13.
32. Palocaren, T., et al., Anterior distal femoral stapling for correcting knee flexion contracture in children with arthrogryposis–preliminary results. J Pediatr Orthop, 2010. 30(2): p. 169-73.
33. Klatt, J. and P.M. Stevens, Guided growth for fixed knee flexion deformity. J Pediatr Orthop, 2008. 28(6): p. 626-31.
34. Herzenberg, J.E., et al., Mechanical distraction for treatment of severe knee flexion contractures. Clin Orthop Relat Res, 1994(301): p. 80-8.
35. DelBello, D.A. and H.G. Watts, Distal femoral extension osteotomy for knee flexion contracture in patients with arthrogryposis. J Pediatr Orthop, 1996. 16(1): p. 122-6.
36. Yang, S.S., et al., Ambulation gains after knee surgery in children with arthrogryposis. J Pediatr Orthop, 2010. 30(8): p. 863-9.
37. Feldman, D.S., T.J. Rand, and A.J. Huser, Novel Approach to Improving Knee Range of Motion in Arthrogryposis with a New Working Classification. Children (Basel), 2021. 8(7).
38. van Bosse, H.J., et al., Treatment of knee flexion contractures in patients with arthrogryposis. J Pediatr Orthop, 2007. 27(8): p. 930-7.
39. Aman, M., et al., Comparative analysis of surgical treatment modalities for a popliteal pterygium: a meta-analysis. Arch Orthop Trauma Surg, 2024. 144(5): p. 2449-2459.
40. Curtis, B.H. and R.L. Fisher, Congenital hyperextension with anterior subluxation of the knee. Surgical treatment and long-term observations. J Bone Joint Surg Am, 1969. 51(2): p. 255-69.
41. Oetgen, M.E., et al., Functional results after surgical treatment for congenital knee dislocation. J Pediatr Orthop, 2010. 30(3): p. 216-23.
42. Shah, N.R., N. Limpaphayom, and M.B. Dobbs, A minimally invasive treatment protocol for the congenital dislocation of the knee. J Pediatr Orthop, 2009. 29(7): p. 720-5.
43. Johnson, E., R. Audell, and W.L. Oppenheim, Congenital dislocation of the knee. J Pediatr Orthop, 1987. 7(2): p. 194-200.
44. Roy, D.R. and A.H. Crawford, Percutaneous quadriceps recession: a technique for management of congenital hyperextension deformities of the knee in the neonate. J Pediatr Orthop, 1989. 9(6): p. 717-9.
45. Fucs, P.M., et al., Quadricepsplasty in arthrogryposis (amyoplasia): long-term follow-up. J Pediatr Orthop B, 2005. 14(3): p. 219-24.
46. Kowalczyk, B. and J. Felus, Arthrogryposis: an update on clinical aspects, etiology, and treatment strategies. Arch Med Sci, 2016. 12(1): p. 10-24.
47. Morcuende, J.A., M.B. Dobbs, and S.L. Frick, Results of the Ponseti method in patients with clubfoot associated with arthrogryposis. Iowa Orthop J, 2008. 28: p. 22-6.
48. Matar, H.E., P. Beirne, and N. Garg, The effectiveness of the Ponseti method for treating clubfoot associated with arthrogryposis: up to 8 years follow-up. J Child Orthop, 2016. 10(1): p. 15-8.
49. van Bosse, H.J.P., Challenging clubfeet: the arthrogrypotic clubfoot and the complex clubfoot. J Child Orthop, 2019. 13(3): p. 271-281.
50. Drummond, D.S. and R.L. Cruess, The management of the foot and ankle in arthrogryposis multiplex congenita. J Bone Joint Surg Br, 1978. 60(1): p. 96-9.
51. Niki, H., L.T. Staheli, and V.S. Mosca, Management of clubfoot deformity in amyoplasia. J Pediatr Orthop, 1997. 17(6): p. 803-7.
52. Guidera, K.J. and J.C. Drennan, Foot and ankle deformities in arthrogryposis multiplex congenita. Clin Orthop Relat Res, 1985(194): p. 93-8.
53. Chergui, S., et al., Talectomy for arthrogrypotic foot deformities: A systematic review. Foot Ankle Surg, 2023. 29(1): p. 15-21.
54. Segal, L.S., et al., Equinovarus deformity in arthrogryposis and myelomeningocele: evaluation of primary talectomy. Foot Ankle, 1989. 10(1): p. 12-6.
55. Eidelman, M. and A. Katzman, Treatment of arthrogrypotic foot deformities with the Taylor Spatial Frame. J Pediatr Orthop, 2011. 31(4): p. 429-34.
56. El Barbary, H., H. Abdel Ghani, and M. Hegazy, Correction of relapsed or neglected clubfoot using a simple Ilizarov frame. Int Orthop, 2004. 28(3): p. 183-6.
57. Chalayon, O., A. Adams, and M.B. Dobbs, Minimally invasive approach for the treatment of non-isolated congenital vertical talus. J Bone Joint Surg Am, 2012. 94(11): p. e73.
58. Bouchard, M., An Algorithmic Approach to the Congenital Vertical Talus. Journal of the Pediatric Orthopaedic Society of North America, 2022. 4(1): p. 398.


How to Cite this Article:  Shah IP, Ranmuthuge S, Parnami V, Chytas A | Lower Limb Deformity Management in Arthrogryposis – What to Correct and When | International Journal of Paediatric Orthopaedics | May-August 2024; 10(2): 40-47.
https://doi.org/10.13107/ijpo.2024.v10.i02.192

(Article Text HTML)      (Full Text PDF)


Management of Limb Deficiencies

Volume 10 | Issue 2 | May-August 2024 | Page: 48-54 | Sakti Prasad Das, Sankar Ganesh, Prateek Behera

DOI- https://doi.org/10.13107/ijpo.2024.v10.i02.194

Submitted: 11/03/2024; Reviewed: 08/04/2024; Accepted: 25/06/2024; Published: 10/08/2024


Authors: Sakti Prasad Das MS(Ortho.), DNB(PMR) [1], Sankar Ganesh MPT [2], Prateek Behera MS(Ortho.), DNB(Ortho.) [3]

[1] Medical Education & Training, DRIEMS University, Odisha, Tangi, Cuttack, Odisha, India.
[2] Department of Physiotherapy, Composite Regional Centre, Lucknow, Uttar Pradesh, India.
[3] Department of Orthopaedics, AIIMS Bhopal, Madhya Pradesh, India.

Address of Correspondence

Dr. Sakti Prasad Das,
Director, Medical Education & Training, DRIEMS University, Odisha, Tangi, Cuttack, Odisha, India.
E-mail: sakti2663@yahoo.com


Abstract

Limb deficiency disorders encompass a wide variety of congenital anomalies that have a significant underdevelopment or even complete absence of bones in the limbs. Treatment of these conditions must be holistic with the child at the centre. This article provides a review of the current understanding of the management of such conditions. Surgical treatment offers a practical and effective solution for treating many variants of congenital limb abnormalities. Although novel surgical treatments may expand the range of disorders that can be treated, it is crucial for both the surgeon and the family to be aware of the careful prognosis associated with the methods used. Additionally, the importance of an amputation as an option should always be kept under consideration.
Keywords: Amputation, Congenital Abnormalities, Deformity correction, Limb reconstruction, Pediatric skeletal deficiencies, Skeletal dysplasia


References

1. WHO. Congenital disorders. Geneva: WHO, 2023. Available: https://www.who.int/news-room/fact-sheets/detail/birth-defects
2. Moges N, Anley DT, Zemene MA, Adella GA, Solomon Y, Bantie B, et al. Congenital anomalies and risk factors in Africa: a systematic review and meta-analysis. BMJ paediatrics open, 2023;7(1), e002022. https://doi.org/10.1136/bmjpo-2023-002022
3. WHO. International statistical classification of diseases and related health problems (ICD)-11. Geneva WHO. 2023. Available: https://www.who.int/classifications/classification-of-diseases
4. Epps CH Jr. Proximal femoral focal deficiency. J Bone Joint Surg Am 1983; 65: 867–70.
5. Kakarla S. Proximal femoral focal deficiency (PFFD) imaging spectrum. J Med Sci Res. 2015;3(2):90–93. doi: 10.17727/JMSR.2015/3-018
6. Paley D, Guardo F. Lengthening reconstruction surgery for congenital deficiency. In: Kocaoglu M, Tsuchiya H, Eralp L, editors. Advanced techniques in limb reconstruction surgery. 2014. pp. 245–298.
7. Gupta SK, Alassaf N, Harrop AR, Kiefer GN. Principles of rotationplasty. J Am Acad Orthop Surg. 2012;20:657–667. doi: 10.5435/JAAOS-20-10-657
8. Ackman J, Altiok H, Flanagan A, Peer M, Graf A, Krzak J, et al. Long-term follow-up of Van Nes rotationplasty in patients with congenital proximal focal femoral deficiency. Bone Joint J. 2013;95-B(2):192–198. doi: 10.1302/0301-620X.95B2.30853
9. Jones D, Barnes J, Lloyd-Roberts GC. Congenital aplasia and dysplasia of the tibia with intact fibula. Classification and management. J Bone Joint Surg Br. 1978;60(1):31-39. doi:10.1302/0301-620X.60B1.627576
10. Kalamchi A., Dawe R.W. Congenital deficiency of the tibia. J. Bone Jt. Surg. Br. 1985;67:581–584. doi: 10.1302/0301-620X.67B4.4030854
11. Weber M. New classification and score for tibia hemimelia. J Child Orthop. 2008;2:169–175.
12. Fernandez-Palazzi F, Bendahan J, Rivas S. Congenital deficiency of the tibia: a report on 22 cases. J Pediatr Orthop B. 1998;7:298–302.
13. Epps C.H., Jr., Schneider P. Treatment of hemimelias of the lower extremity. Long–term results. J. Bone Jt. Surg. Am. Vol. 1989;71:273–277. doi: 10.2106/00004623-198971020-00015
14. Putti V. The treatment of congenital absence of the tibia or fibula. Chir. Org. Mov. 1929;7:513.
15. Paley D. Surgical reconstruction for fibular hemimelia. J. Child. Orthop. 2016;10:557–583. doi: 10.1007/s11832-016-0790-0
16. Paley D., Robbins C. Fibular hemimelia Paley type 3. In: Rozbruch S.R., Hamdy R., editors. Limb Lengthening and Reconstruction Surgery Case Atlas. 1st ed. Springer International Publishing; Cham, Switzerland: 2015. pp. 1–8.
17. Johnson CE, Haideri NF. Comparison of functional outcome in fibular deficiency treated by limb salvage versus Syme’s amputation. In: Herring JA, Birch JG, eds. The Child With a Limb Deficiency. Rosemont: American Academy of Orthopaedic Surgeons; 1998: 173–177.
18. Herzenberg J., Shabtai L, Standard SC. Fibular hemimelia: Principles and techniques of management. In: Sabharwal S., editor. Pediatric Lower Limb Deformities, Principles and Techniques of Management. 1st ed. Springer International Publishing; Cham, Switzerland: 2016. pp. 427–454.
19. Birch JG, Lincoln TL, Mack PW, et al. Congenital fibular deficiency: a review of thirty years’ experience at one institution and a proposed classification system based on clinical deformity. J Bone Joint Surg Am. 2011;93:1144–1151.
20. Ali S, Kaplan S, Kaufman T, Fenerty S, Kozin S, Zlotolow DA. Madelung deformity and Madelung-type deformities: a review of the clinical and radiological characteristics. Pediatr Radiol. 2015;45(12):1856-1863. doi:10.1007/s00247-015-3390-0
21. Nielsen JB. Madelung’s deformity. A follow-up study of 26 cases and a review of the literature. Acta Orthop Scand. 1977;48(4):379-384. doi:10.3109/17453677708992012
22. Farr S, Martinez-Alvarez S, Little KJ et al (2021) The prevalence of Vickers’ ligament in Madelung’s deformity: a retrospective multicentre study of 75 surgical cases. J Hand Surg Eur. https://doi. org/ 10. 1177/ 17531 93420 981522
23. Vickers D, Nielsen G. Madelung deformity: surgical prophylaxis (physiolysis) during the late growth period by resection of the dyschondrosteosis lesion. J Hand Surg Br. 1992;17(4):401-407.
24. Laffosse JM, Abid A, Accadbled F, Knör G, de Gauzy JS, Cahuzac JP. Surgical correction of Madelung’s deformity by combined corrective radioulnar osteotomy: 14 cases with four-year minimum follow-up. IntOrthop. 2009; 33: 1655-1661.
25. Steinman S, Oishi S, Mills J, Bush P, Wheeler L, Ezaki M. Volar ligament release and distal radial dome osteotomy for the correction of Madelung deformity: long-term follow-up. J Bone Joint Surg Am. 2013;95(13):1198-1204. doi:10.2106/JBJS.L.00714
26. Colen DL, Lin IC, Levin LS, Chang B. Radial longitudinal deficiency: recent developments, controversies, and an evidence-based guide to treatment. J Hand Surg Am. 2017 Jul;42(7):546-563. https://doi.org/10.1016/j.jhsa.2017.04.012
27. Bednar MS, James MA, Light TR. Congenital longitudinal deficiency. J Hand Surg Am. 2009 Nov;34(9):1739-1747. https://doi.org/10.1016/j.jhsa.2009.09.002
28. Stutz C, Oishi S. Radial longitudinal deficiency: radius hypoplasia. In: Laub Jr DR, ed. Congenital Anomalies of the Upper Extremity. New York: Springer; 2015:85-94.
29. Takagi T, Seki A, Mochida J, Takayama S. Bone lengthening of the radius with temporary external fixation of the wrist for mild radial club hand. J Plast Reconstr Aesthetic Surg. 2014;67:1688e1693. https://doi.org/10.1016/ j.bjps.2019.05.044
30. Buck-Gramcko D. Radialization as a new treatment for radial club hand. J. Hand Surg. Am. 1985;10(6 Pt 2):964–968. doi: 10.1016/S0363-5023(85)80013-7
31. Wall LB, Ezaki M, Oishi SN. Management of congenital radial longitudinal deficiency: controversies and current concepts. Plast Reconstr Surg. 2013 Jul;132(1):122-128.
32. Cole RJ, Manske PR .Classification of ulnar deficiency according to the thumb and first web.. J Hand Surg Am. 1997;22:479–488.

 


How to Cite this Article:  Das SP, Ganesh S, Behera P | Management of Limb Deficiencies | International Journal of Paediatric Orthopaedics | May-August 2024; 10(2): 48-54. https://doi.org/10.13107/ijpo.2024.v10.i02.194

(Article Text HTML)      (Full Text PDF)


Management of Complex Foot Deformities in Children

Volume 10 | Issue 2 | May-August 2024 | Page: 34-39 | Sagar Umerjikar, Abhishek V. Mundargi, Koushik N. Subramanyam

DOI- https://doi.org/10.13107/ijpo.2024.v10.i02.190

Submitted: 25/05/2024; Reviewed: 24/06/2024; Accepted: 21/07/2024; Published: 10/08/2024


Authors: Sagar Umerjikar MS Ortho [1], Abhishek V. Mundargi MS Ortho [1], Koushik N. Subramanyam MS Ortho [1]

[1] Department of Orthopaedics, Sri Sathya Sai Institute of Higher Medical Sciences, Prasanthigram, Puttaparthi, Andhra Pradesh, India.

Address of Correspondence

Dr. Koushik Narayan Subramanyam ,
Department of Orthopaedics, Sri Sathya Sai Institute of Higher Medical Sciences, Prasanthigram, Puttaparthi, Andhra Pradesh, India.
E-mail: koushik.n@sssihms.org.in


Abstract

Aim: The aim of this article is to understand the intricacies of various complex foot deformities in children and non-operative and operative strategies in managing them by reviewing data from published literature.
Methods: A review of information pertaining to complex foot deformities in children was assimilated for holistic understanding of the condition along with their management from various sources from PubMed and Google Scholar.
Conclusion: Treatment of pediatric foot and ankle deformities is complex and must be individualized. The inter-individual phenotypic variability demands a personalized planning of each foot to be operated. Factors to consider are age at presentation, primary pathology causing the deformity and the underlying complex pathoanatomy. Treatment must also assess the possibility of relapse of the deformity and measures must be incorporated to prevent the same.

Keywords: 


References

1. Kocaoğlu M, Eralp L, Atalar AC, Bilen FE. Correction of complex foot deformities using the Ilizarov external fixator. J Foot Ankle Surg. 2002 Jan-Feb;41(1):30-9. doi: 10.1016/s1067-2516(02)80007-2. PMID: 11858604.
2. Dhar S. Ilizarov external fixation in the correction of severe pediatric foot and ankle deformities. Foot Ankle Clin. 2010 Jun;15(2):265-85. doi: 10.1016/j.fcl.2010.03.001. PMID: 20534355.
3. Riganti S, Coppa V, Nasto LA, Di Stadio M, Calevo MG, Gigante AP, Boero S. Treatment of complex foot deformities with hexapod external fixator in growing children and young adult patients. Foot Ankle Surg. 2019 Oct;25(5):623-629. doi: 10.1016/j.fas.2018.07.001. Epub 2018 Jul 9. PMID: 30321938.
4. Reeves CL, Shane AM, Zappasodi F, Payne T. Surgical Correction of Rigid Equinovarus Contracture Utilizing Extensive Soft Tissue Release. Clin Podiatr Med Surg. 2016 Jan;33(1):139-52. doi: 10.1016/j.cpm.2015.06.009. Epub 2015 Aug 20. PMID: 26590731.
5. Vlachou M, Dimitriadis D. Split tendon transfers for the correction of spastic varus foot deformity: a case series study. J Foot Ankle Res. 2010 Dec 14;3:28. doi: 10.1186/1757-1146-3-28. PMID: 21156075; PMCID: PMC3016343.
6. Elgeidi A, Abulsaad M. Combined double tarsal wedge osteotomy and transcuneiform osteotomy for correction of resistant clubfoot deformity (the “bean-shaped” foot). J Child Orthop. 2014 Oct;8(5):399-404. doi: 10.1007/s11832-014-0613-0. Epub 2014 Oct 4. PMID: 25280469; PMCID: PMC4391053.
7. Rampal V, Giuliano F. Forefoot malformations, deformities and other congenital defects in children. Orthop Traumatol Surg Res. 2020 Feb;106(1S):S115-S123. doi: 10.1016/j.otsr.2019.03.021. Epub 2019 Oct 21. PMID: 31648997.
8. Moreira, A., Benjamin Ravetti, L., Carrapeiro Prina, D. et al. Anterior tibial tendon transfer in idiopathic clubfoot: pull-out vs. other fixations – a systematic review. BMC Musculoskelet Disord 25, 638 (2024). https://doi.org/10.1186/s12891-024-07621-9
9. Farsetti P, Dragoni M, Ippolito E. Tibiofibular torsion in congenital clubfoot. J Pediatr Orthop B. 2012 Jan;21(1):47-51. doi: 10.1097/BPB.0b013e32834d4dc3. PMID: 22027706.
10. Walton DM, Liu RW, Farrow LD, Thompson GH. Proximal tibial derotation osteotomy for torsion of the tibia: a review of 43 cases. J Child Orthop. 2012 Mar;6(1):81-5. doi: 10.1007/s11832-012-0384-4. Epub 2012 Jan 31. PMID: 23448753; PMCID: PMC3303016.
11. Alkar F, Louahem D, Bonnet F, Patte K, Delpont M, Cottalorda J. Long-term Results After Extensive Soft Tissue Release in Very Severe Congenital Clubfeet. J Pediatr Orthop. 2017 Oct/Nov;37(7):500-503. doi: 10.1097/BPO.0000000000000703. PMID: 26633817.
12. Eidelman M, Kotlarsky P, Herzenberg JE. Treatment of relapsed, residual and neglected clubfoot: adjunctive surgery. J Child Orthop. 2019 Jun 1;13(3):293-303. doi: 10.1302/1863-2548.13.190079. PMID: 31312269; PMCID: PMC6598039.
13. Kirienko A, Villa A, Calhoun JH Ilizarov technique for complex foot and ankle deformities. Boca Raton: CRC Press, 2003.
14. van Bosse HJP. Challenging clubfeet: the arthrogrypotic clubfoot and the complex clubfoot. J Child Orthop. 2019 Jun 1;13(3):271-281. doi: 10.1302/1863-2548.13.190072. PMID: 31312267; PMCID: PMC6598040.
15. Conklin MJ, Kishan S, Nanayakkara CB, Rosenfeld SR. Orthopedic guidelines for the care of people with spina bifida. J Pediatr Rehabil Med. 2020;13(4):629-635. doi: 10.3233/PRM-200750. PMID: 33252095; PMCID: PMC7838956.
16. Horsch A, Petzinger L, Ghandour M, Putz C, Renkawitz T, Götze M. Defining Equinus Foot in Cerebral Palsy. Children (Basel). 2022 Jun 25;9(7):956. doi: 10.3390/children9070956. PMID: 35883940; PMCID: PMC9320304.
17. Kadhim M, Holmes L Jr, Church C, Henley J, Miller F. Pes planovalgus deformity surgical correction in ambulatory children with cerebral palsy. J Child Orthop. 2012 Jul;6(3):217-27. doi: 10.1007/s11832-012-0413-3. Epub 2012 Jun 20. PMID: 23814622; PMCID: PMC3400002.
18. Hochstetter-Owen J, Stott S, Williams SA. The efficacy of split tibial tendon transfers on functional gait outcomes for children and youth with cerebral palsy and spastic equinovarus foot deformities. Bone Jt Open. 2023 May 1;4(5):283-298. doi: 10.1302/2633-1462.45.BJO-2023-0005.R1. PMID: 37121581; PMCID: PMC10149292.
19. Wirth T. Congenital Vertical Talus. Foot Ankle Clin. 2021 Dec;26(4):903-913. doi: 10.1016/j.fcl.2021.08.002. Epub 2021 Oct 7. PMID: 34752243.
20. Altaf KA, Shah SBS, Ahmad S, Mumtaz U, Mantoo SA. Results of JESS (Joshi’s External Stabilizing System) in Relapsed, Neglected and Neurogenic Clubfoot in an Age Group of 2-10 Years. Ortop Traumatol Rehabil. 2020 Apr 30;22(2):121-129. doi: 10.5604/01.3001.0014.1170. PMID: 32468991.


How to Cite this Article: Umerjikar S, Mundargi AV, Subramanyam KN | Management  of Complex Foot Deformities in Children | International Journal of Paediatric Orthopaedics | May-August 2024; 10(2): 34-39.

(Article Text HTML)      (Full Text PDF)


Radiological Assessment and Planning of Deformities

Volume 10 | Issue 2 | May-August 2024 | Page: 12-17 | Sudhanshu Bansal, Gaurav Gupta, Deepak Khurana 

DOI- https://doi.org/10.13107/ijpo.2024.v10.i02.184

Submitted: 05/03/2024; Reviewed: 02/04/2024; Accepted: 15/05/2024; Published: 10/08/2024


Authors: Sudhanshu Bansal MS Ortho [1], Gaurav Gupta MS Ortho [2], Deepak Khurana MS Ortho [3]

[1] Department of Paediatric Orthopaedic Surgery, CODS Clinic, Ludhiana, Amandeep Hospital, Amritsar, Punjab, India.
[2] Department of Paediatric Orthopaedic Surgery, Child Ortho Clinic, Delhi-NCR, India.
[3] Department of Paediatric Orthopaedic Surgery, JCPODS, Jeevan Rekha hospital, Jaipur, Rajasthan, India.

Address of Correspondence

Dr. Sudhanshu Bansal,
Consultant, Paediatric Orthopaedic Surgeon, CODS Clinic, Ludhiana, Amandeep Hospital, Amritsar, Punjab, India.
E-mail: drbansalsudhanshu@gmail.com


Abstract

Deformity correction is a fundamental aspect of orthopedic surgery, requiring a precise radiological assessment and systematic planning. This article provides an indepth overview of the radiological modalities available for deformity assessment, including X-rays, scannograms, computed tomography (CT), and magnetic resonance imaging (MRI). Proper radiographic techniques, such as standing fulllength X-rays and scannograms, are critical for accurate limb alignment assessment. Advanced imaging modalities, including CT and MRI, are necessary in cases of complex deformities or rotational abnormalities. Furthermore, various software applications are available for preoperative deformity planning, enabling precise correction strategies. This article also addresses approaches for managing deformities in limited-resource settings, emphasizing cost-effective and accessible imaging techniques. The objective is to enhance clinical decisionmaking and optimize surgical outcomes in deformity management.
Keywords: Alignment, Anatomic tibiofemoral angle, Deformity, Knee, Lower limb alignment, Mechanical axis angle, Radiography


References

1. Sabharwal, S.; Zhao, C.; McKeon, J.; Melaghari, T.; Blacksin, M.; Wenekor, C. Reliability analysis for radiographic measurement of limb length discrepancy: Full-length standing anteroposterior radiograph versus scanogram. J. Pediatr. Orthop. 2006, 27, 46–50.
2. Sheehy, L.; Cooke, T.D.V. Radiographic assessment of leg alignment and grading of knee osteoarthritis: A critical review. World J. Rheumatol. 2015, 5, 69–81. 
3. Marques Luís, N.; Varatojo, R. Radiological assessment of lower limb alignment. EFORT Open Rev. 2021, 6, 487–494.
4. Paley, D. Radiographic assessment of lower limb deformities. In Principles of Deformity Correction; Paley, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 31–60.
5. Zampogna, B.; Vasta, S.; Amendola, A.; Uribe-Echevarria Marbach, B.; Gao, Y.; Papalia, R.; Denaro, V. Assessing Lower Limb Alignment: Comparison of Standard Knee Xray vs Long Leg View. Iowa Orthop. J. 2015, 35, 49–54.
6. Hinterwimmer, S.; Graichen, H.; Vogl, T.J.; Abolmaali, N. An MRI-based technique for assessment of lower extremity deformities-reproducibility, accuracy, and clinical application. Eur. Radiol. 2008, 18, 149–1505.
7. Winter, A.; Ferguson, K.; Syme, B.; McMillan, J.; Holt, G. Pre-operative analysis of lower limb coronal alignment—A comparison of supine MRI versus standing full-length alignment radiographs. Knee 2014, 21, 1084–1087.
8. Zahn, R.K.; Renner, L.; Perka, C.; Hommel, H. Weight-bearing radiography depends on limb loading. Knee Surg. Sport. Traumatol.Arthrosc. 2019, 27, 1470–1476. 
9. Tarassoli, P.; Corban, L.E.; Wood, J.A.; Sergis, A.; Chen, D.B.; MacDessi, S.J. Long leg radiographs underestimate the degree of constitutional varus limb alignment and joint line obliquity in comparison with computed tomography: A radiographic study. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 4755–4765. 
10. Sabharwal, S.; Zhao, C.; Edgar, M. Lower limb alignment in children: Reference values based on a full-length standing radiograph. J. Pediatr. Orthop. 2008, 28, 740–746. 
11. Krackow K. The measurement and analysis of axial deformity at the knee. Mahwah, NJ: Homer Stryker Center, 2008.
12. Solomin, L.N.; Utekhin, A.I.; Vilenskiy, V.A. Reference values of the femur and tibia mechanical axes and angles in the sagittal plane, determined on the basis of three-dimensional modeling. J. Limb Lengthen Reconstr. 2020, 6, 116–120. 
13. Guggenberger, R.; Pfirrmann, C.W.; Koch, P.P.; Buck, F.M. Assessment of lower limb length and alignment by biplanar linear radiography: Comparison with supine CT and upright fulllength radiography. AJR Am. J. Roentgenol. 2014, 202, W161–W167 
14. Fürmetz, J.; Sass, J.; Ferreira, T.; Jalali, J.; Kovacs, L.; Mück, F.; Degen, N.; Thaller, P.H. Three-dimensional assessment of lower limb alignment: Accuracy and reliability. Knee 2019, 26, 185–193. 
15. Ahrend, M.D.; Baumgartner, H.; Ihle, C.; Histing, T.; Schröter, S.; Finger, F. Influence of axial limb rotation on radiographic lower limb alignment: A systematic review. Arch. Orthop. Trauma Surg. 2022, 142, 3349–3366. 
16. Buck FM, Guggenberger R, Koch pp, Pfirrmann CWA. Femoral and tibial torsion measurements with 3D models based on low-dose biplanar radiographs in comparison with standard CT measurements. AJR Am J Roentgenol 2012;199:W607–W612.
17. Kuiper, R.J.A.; Seevinck, P.R.; Viergever, M.A.; Weinans, H.; Sakkers, R.J.B. Automatic Assessment of Lower-Limb Alignment from Computed Tomography. J. Bone Jt. Surg. Am. 2023, 105, 700–712. 
18. Simon, S.; Schwarz, G.M.; Aichmair, A.; Frank, B.J.H.; Hummer, A.; DiFranco, M.D.; Dominkus, M.; Hofstaetter, J.G. Fully automated deep learning for knee alignment assessment in lower extremity radiographs: A cross-sectional diagnostic study. Skeletal Radiol. 2022, 51, 1249– 1259. 


How to Cite this Article:  Bansal S, Gupta G, Khurana D | Radiological Assessment and Planning of Deformities | International Journal of Paediatric Orthopaedics | May-August 2024; 10(2): 12-17. https://doi.org/10.13107/ijpo.2024.v10.i02.184

(Article Text HTML)      (Full Text PDF)


Basics of Paediatric Limb Reconstruction Surgeries

Volume 10 | Issue 2 | May-August 2024 | Page: 2-11 | Prateek Rastogi, Nitish Arora, Yogesh Patel 

DOI- https://doi.org/10.13107/ijpo.2024.v10.i02.182

Submitted: 18/05/2024; Reviewed: 14/06/2024; Accepted: 19/07/2024; Published: 10/08/2024


Authors: Prateek Rastogi MS Ortho [1], Nitish Arora MS Ortho [2], Yogesh Patel MS Ortho [3]

[1] Department of Orthopaedics, Sharda Hospital, Greater Noida, Uttar Pradesh, India.
[2] Department of Orthopaedics, Medicover Hospital, Khargar, Navi Mumbai, Maharashtra, India.
[3] Department of Orthopaedics, Sagar Multispeciality Hospital, Bhopal, Madhya Pradesh, India.

Address of Correspondence

Dr. Prateek Rastogi,
Paediatric Orthopaedics and Limb Reconstruction Surgeon, Department of Orthopaedics, Sharda Hospital, Greater Noida, Uttar Pradesh, India.
E-mail: prateek.rastogi12@gmail.com


Abstract

Paediatric limb reconstruction surgeries play a pivotal role in managing congenital and acquired deformities, limb length discrepancies, and complex musculoskeletal disorders in children. These procedures aim to restore alignment, function, and length while preserving growth potential and minimizing long-term disability. Unlike adult cases, paediatric reconstructions demand unique considerations due to ongoing skeletal development, necessitating precise planning to avoid growth plate damage. This review outlines the evolving indications for reconstruction—including congenital conditions like various hemimelia and bony deficiency, as well as acquired deformities from trauma, infection, and tumors. Foundational principles such as anatomical and mechanical axes and their deviation, CORA (Center of Rotation of Angulation), and ACA (Angulation Correction Axis) are discussed alongside osteotomy planning and execution. Techniques of gradual deformity correction such as growth modulation, and distraction osteogenesis are examined in depth, highlighting the roles of devices like Ilizarov fixators, hexapods, and intramedullary lengthening nails. Recent advancements in imaging, surgical planning, and implant design have significantly improved outcomes, although complications such as joint stiffness, infection, and secondary deformities persist. With increasing precision and a growing array of tools, paediatric limb reconstruction continues to evolve, offering promising outcomes and functional restoration to affected children.
Keywords: Paediatric limb reconstruction, Deformity Correction, Limb Lengthening, Growth Modulation, Distraction Osteogenesis, Osteotomy Techniques


References

1. Hosny GA. Limb lengthening history, evolution, complications and current concepts. J Orthop Traumatol. 2020;21(1):3. doi:10.1186/s10195-019-0541-3
2. Greenberg LA. Genu Varum and Genu Valgum: Another Look. Am J Dis Child. 1971;121(3):219. doi:10.1001/archpedi.1971.02100140085006
3. Kim TG, Park MS, Lee SH, et al. Leg-length discrepancy and associated risk factors after paediatric femur shaft fracture: A multicentre study. Journal of Children’s Orthopaedics. 2021;15(3):215-222. doi:10.1302/1863-2548.15.200252
4. Popkov A, Dučić S, Lazović M, Lascombes P, Popkov D. Limb lengthening and deformity correction in children with abnormal bone. Injury. 2019;50:S79-S86. doi:10.1016/j.injury.2019.03.045
5. Nasto LA, Coppa V, Riganti S, et al. Clinical results and complication rates of lower limb lengthening in paediatric patients using the PRECICE 2 intramedullary magnetic nail: a multicentre study. Journal of Pediatric Orthopaedics B. 2020;29(6):611-617. doi:10.1097/BPB.0000000000000651
6. Radler C, Calder P, Eidelman M, et al. What’s new in pediatric lower limb reconstruction? Journal of Children’s Orthopaedics. 2024;18(4):349-359. doi:10.1177/18632521241258351
7. Calder PR, Faimali M, Goodier WD. The role of external fixation in paediatric limb lengthening and deformity correction. Injury. 2019;50:S18-S23. doi:10.1016/j.injury.2019.03.049
8. Guarniero R, Barros Júnior TE. Femoral lengthening by the Wagner method. Clin Orthop Relat Res. 1990;(250):154-159.
9. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res. 1989;(238):249-281.
10. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction. Clin Orthop Relat Res. 1989;(239):263-285.
11. Socci AR, Horn D, Fornari ED, Lakra A, Schulz JF, Sharkey MS. What’s New in Pediatric Limb Lengthening and Deformity Correction? Journal of Pediatric Orthopaedics. 2020;40(7):e598-e602. doi:10.1097/BPO.0000000000001456
12. Boero S, Riganti S, Marrè Brunenghi G, Nasto LA. Hexapod External Fixators in Paediatric Deformities. In: Massobrio M, Mora R, eds. Hexapod External Fixator Systems. Springer International Publishing; 2021:133-152. doi:10.1007/978-3-030-40667-7_8
13. Georgiadis AG, Rossow JK, Laine JC, Iobst CA, Dahl MT. Plate-assisted Lengthening of the Femur and Tibia in Pediatric Patients. Journal of Pediatric Orthopaedics. 2017;37(7):473-478. doi:10.1097/BPO.0000000000000645
14. Iobst C. Advances in Pediatric Limb Lengthening: Part 1. JBJS Rev. 2015;3(8). doi:10.2106/JBJS.RVW.N.00101
15. Iobst C. Advances in Pediatric Limb Lengthening: Part 2. JBJS Rev. 2015;3(9). doi:10.2106/JBJS.RVW.N.00102
16. Paley D. Problems, obstacles, and complications of limb lengthening by the Ilizarov technique. Clin Orthop Relat Res. 1990;(250):81-104.
17. Shabtai L, Specht SC, Standard SC, Herzenberg JE. Internal Lengthening Device for Congenital Femoral Deficiency and Fibular Hemimelia. Clin Orthop Relat Res. 2014;472(12):3860-3868. doi:10.1007/s11999-014-3572-3
18. Fuller CB, Shannon CE, Paley D. Lengthening Reconstruction Surgery for Fibular Hemimelia: A Review. Children (Basel). 2021;8(6):467. doi:10.3390/children8060467
19. Chong DY, Paley D. Deformity Reconstruction Surgery for Tibial Hemimelia. Children (Basel). 2021;8(6):461. doi:10.3390/children8060461
20. Paley D. Paley Cross-Union Protocol for Treatment of Congenital Pseudarthrosis of the Tibia. Operative Techniques in Orthopaedics. 2021;31(2):100881. doi:10.1016/j.oto.2021.100881
21. Gaber K, Mir B, Shehab M, Kishta W. Updates in the Surgical Management of Recurrent Clubfoot Deformity: a Scoping Review. Curr Rev Musculoskelet Med. 2022;15(2):75-81. doi:10.1007/s12178-022-09739-6
22. Qin S, Zang J, Wang Y, Jiao S, Qin X, Pan Q. Traumatic Sequelae of Lower Limb. In: Qin S, Zang J, Jiao S, Pan Q, eds. Lower Limb Deformities. Springer Singapore; 2020:433-470. doi:10.1007/978-981-13-9604-5_10
23. Belthur MV, Esparza M, Fernandes JA, Chaudhary MM. Post Infective Deformities: Strategies for Limb Reconstruction. In: Belthur MV, Ranade AS, Herman MJ, Fernandes JA, eds. Pediatric Musculoskeletal Infections. Springer International Publishing; 2022:411-493. doi:10.1007/978-3-030-95794-0_23
24. Nagarajan R, Neglia JP, Clohisy DR, Robison LL. Limb Salvage and Amputation in Survivors of Pediatric Lower-Extremity Bone Tumors: What Are the Long-Term Implications? JCO. 2002;20(22):4493-4501. doi:10.1200/JCO.2002.09.006
25. Chan G, Miller F. Assessment and Treatment of Children with Cerebral Palsy. Orthopedic Clinics of North America. 2014;45(3):313-325. doi:10.1016/j.ocl.2014.03.003
26. Lamm BM, Paley D. Deformity correction planning for hindfoot, ankle, and lower limb. Clinics in Podiatric Medicine and Surgery. 2004;21(3):305-326. doi:10.1016/j.cpm.2004.04.004
27. Çakmak M, Şen C, Eralp L, Balci HI, Civan M, eds. Basic Techniques for Extremity Reconstruction. Springer International Publishing; 2018. doi:10.1007/978-3-319-45675-1
28. Paley D, Herzenberg JE, Tetsworth K, McKie J, Bhave A. Deformity Planning for Frontal and Sagittal Plane Corrective Osteotomies. Orthopedic Clinics of North America. 1994;25(3):425-465. doi:10.1016/S0030-5898(20)31927-1
29. Paley D. Principles of Deformity Correction. Springer Berlin Heidelberg; 2002. doi:10.1007/978-3-642-59373-4
30. Farr S, Mindler G, Ganger R, Girsch W. Bone Lengthening in the Pediatric Upper Extremity. The Journal of Bone and Joint Surgery. 2016;98(17):1490-1503. doi:10.2106/JBJS.16.00007
31. Thomas A, Round J. Basic principles of lower limb deformity correction. Surgery (Oxford). 2023;41(4):255-261. doi:10.1016/j.mpsur.2023.02.015
32. Madhuri V, Reddy J. Acute Deformity Correction Using an Osteotomy. In: Sabharwal S, Iobst CA, eds. Pediatric Lower Limb Deformities. Springer International Publishing; 2024:117-150. doi:10.1007/978-3-031-55767-5_8
33. Hubbard EW, Cherkashin A, Samchukov M, Podeszwa D. The Evolution of Guided Growth for Lower Extremity Angular Correction. Journal of the Pediatric Orthopaedic Society of North America. 2023;5(3):738. doi:10.55275/JPOSNA-2023-738
34. Metaizeau JD, Denis D, Louis D. New femoral derotation technique based on guided growth in children. Orthopaedics & Traumatology: Surgery & Research. 2019;105(6):1175-1179. doi:10.1016/j.otsr.2019.06.005
35. Horn J, Steen H, Huhnstock S, Hvid I, Gunderson RB. Limb lengthening and deformity correction of congenital and acquired deformities in children using the Taylor Spatial Frame. Acta Orthopaedica. 2017;88(3):334-340. doi:10.1080/17453674.2017.1295706
36. Karpinski MR, Newton G, Henry AP. The results and morbidity of varus osteotomy for Perthes’ disease. Clin Orthop Relat Res. 1986;(209):30-40.
37. Kanaujia RR, Ikuta Y, Muneshige H, Higaki T, Shimogaki K. Dome osteotomy for cubitus varus in children. Acta Orthopaedica Scandinavica. 1988;59(3):314-317. doi:10.3109/17453678809149371
38. Nelitz M. Femoral Derotational Osteotomies. Curr Rev Musculoskelet Med. 2018;11(2):272-279. doi:10.1007/s12178-018-9483-2
39. Tennant JN, Carmont M, Phisitkul P. Calcaneus osteotomy. Curr Rev Musculoskelet Med. 2014;7(4):271-276. doi:10.1007/s12178-014-9237-8.


How to Cite this Article:  Rastogi P, Arora N, Patel Y| Basics of Paediatric Limb Reconstruction Surgeries| International Journal of Paediatric Orthopaedics | May-August 2024; 10(2): 02-11. https://doi.org/10.13107/ijpo.2024.v10.i02.182

(Article Text HTML)      (Full Text PDF)


Editorial

Volume 10 | Issue 2 | May-August 2024 | Page: 01 | Jayanth S. Sampath

DOI- https://doi.org/10.13107/ijpo.2024.v10.i02.180


Authors: Jayanth S. Sampath FRCSEd (Tr & Orth) [1]

[1] Department of Orthopaedics, Rainbow Children’s Hospital, Bangalore, Karnataka, India.

Address of Correspondence

Dr. Jayanth S. Sampath,
Rainbow Children’s Hospital, Bangalore, Karnataka, India.
E-mail: editor.posi.ijpo@gmail.com


Editorial

Limb reconstruction surgery in children has evolved into the treatment of choice for complex deformities of the limb and foot. The power of gradual correction with stable fixation devices of varying complexity have overcome the limitations of traditional open surgery. It is an important and potent skill in the hands of the paediatric orthopaedic surgeon.
This issue of IJPO presents an overview of the principles and practice in modern limb reconstruction surgery. We start with an article on basic deformity correction principles followed by a detailed description of radiological assessment of deformity. The subsequent articles provide a comprehensive overview of the management of Blount disease, hip instability, complex foot deformities, arthrogryposis and limb deficiencies. We are proud that the authors are from institutions across the world, each offering a unique perspective to the management of these difficult problems. Please share the articles with your trainees and fellows. IJPO issues are easily downloadable free of charge and in full-text format from our website www.ijpoonline.com
We invite your suggestions and comments for any improvements to the journal. Kindly write to us editor.ijpo@gmail.com or editor@posi.org.in
It is my pleasure to acknowledge the contributions of authors, reviewers, editors, and the backend team who have been instrumental in bringing out this issue. The cover page artwork by Dr Easwar T R, POSI Webmaster illustrates the correction of a child with tibia vara using an external fixator. It emphasises that the most successful treatments in our armamentarium are not necessarily complicated but are based on a firm understanding of the pathological anatomy of deformity and the application of a standardised method in practice.

Sincerely


Dr Jayanth S Sampath
Editor,

International Journal of Paediatric Orthopaedics

 

 


How to Cite this Article:  Sampat JS | Editorial | International Journal of Paediatric Orthopaedics | May-August 2024;10(2): 01. https://doi.org/10.13107/ijpo.2024.v10.i02.180

(Article Text HTML)      (Full Text PDF)


Management of Hip Instability in Children

Volume 10 | Issue 2 | May-August 2024 | Page: 18-23 | Parmanand Gupta, Deepak Kumar

DOI- https://doi.org/10.13107/ijpo.2024.v10.i02.186

Submitted: 02/06/2024; Reviewed: 26/06/2024; Accepted: 16/07/2024; Published: 10/08/2024


Authors: Parmanand Gupta MS Ortho [1], Deepak Kumar MS Ortho [1]

[1] Department of Orthopaedics, Government Medical College and Hospital, Chandigarh, India.

Address of Correspondence

Dr. Parmanand Gupta,
Department of Orthopaedics, Government Medical College and Hospital, Chandigarh, India.
E-mail: drpgupta123@gmail.com


Abstract

Post septic resorption and neglected hip dislocation due to hip dysplasia are the common causes of hip instability in children. The goal in such cases is to create a joint which is stable, painless and mobile hip and mimics the function of the original hip. Hip arthrodesis takes away the mobility of the hip whereas excision arthroplasty of the femoral head only addresses pain but not instability. Pelvic Support Osteotomy overcomes these limitations and addresses pain, instability as well as limp. A big drawback of this procedure remains failure to address limb length discrepancy as well as valgus at the knee. Adding a second osteotomy to the distal femoral shaft region addresses the problem of shortening as well as valgus malalignment of the limb resulting from the pelvic support osteotomy component. This procedure should preferably be performed in a child older than 12 years as doing it prior to this age often results in remodeling at the osteotomy site, thereby leading to less than optimal results with passage of time.
Keywords: Hip instability, Pelvic support osteotomy, Ilizarov HipConstruction


References

1. Garrett JC, Epstein HC, Harris WH, Harvey JP Jr, Nickel VL. Treatment of unreduced traumatic posterior dislocations of the hip. J Bone Joint Surg Am. 1979 Jan;61(1):2-6. PMID: 759430.
2. Hartofilakidis G, Stamos K, Karachalios T, Ioannidis TT, Zacharakis N (1996) Congenital hip disease in adults. Classification of acetabular deficiencies and operative treatment with acetabuloplasty combined with total hip arthroplasty. J Bone Joint Surg Am 78:683–692
3. Vaquero-Picado A, Gonzalez-Moran G, Garay EG, Moraleda L (2019) Developmental dysplasia of the hip: update of management. Efort Open Rev 4:548–556
4. Hougaard K, Thomsen PB (1988) Traumatic posterior fracture–dislocation of the hip with fracture of the femoral head or neck, or both. J Bone Joint Surg Am 70:233–239
5. Kim Y-J, Mamisch TC, editors. Hip magnetic resonance imaging. New York, NY: Springer; 2016.
6. Choi IH, Shin YW, Chung CY, et al. Surgical treatment of the severe sequelae of infantile septic arthritis of the hip. Clin Orthop Relat Res. 2005;434:102–109.
7. MacKenzie JR, Kelley SS, Johnston RC (1996) Total hip replacement for coxarthrosis secondary to congenital dysplasia and dislocation of the hip Long-term results. J Bone Joint Surg Am 78(1):55–61
8. Hallel T, Salvati EA. Septic arthritis of the hip in infancy: end result study. Clin Orthop. 1978;132:115-28.
9. Milch H (1941) The ‘pelvic support’ osteotomy. J Bone Joint Surg Am 23(3):581–595
10. Kadykalo OA, Kuftyev LM. Some biomechanical principles of the hip reconstruction with defect on head and neck of the femur by Ilizarov method. The Value of General Biological Patterns in Regeneration Tissue Opened by G.A. Ilizarov. Kurgan All-Union Scientific Center: Rehabilitation Traumatology and Orthopaedics; 1988:124–129.
11. Rozbruch SR, Paley D, Bhave A, et al. Ilizarov hip reconstruction for the late sequelae of infantile hip infection. J Bone Joint Surg Am. 2005;87-A:1007–1018.
12. Krieg AH, Lenze U, Hasler CC. Ilizarov hip reconstruction without external fixation: a new technique. J Child Orthop. 2010;4(3):259-266.
13. Pafilas D, Nayagam S. The pelvic support osteotomy: indications and preoperative planning. Strategies trauma limb reconstruction.2008;3(2):83-92.
14. Saleh M, Milne A (1994) Weight-bearing parallel-beam scenography for the measurement of leg length and joint alignment. J Bone Joint Surg Br 76(1):156–157
15. Choi IH, Cho TJ, Yoo WJ, Shin CH. Recurrent dislocations and complete necrosis: the role of pelvic support osteotomy. J Pediatr Orthop. 2013 Jul-Aug;33 Suppl 1:S45-55
16. Paley D. Hip joint considerations. Principles of Deformity Correction. Heidelberg: Springer-Verlag; 2002:647–694.
17. Hosny GA, Ahmed A. Is arthroplasty inevitable after Ilizarov hip reconstruction of unstable hip joints in adolescents and young adults? Long-Term Evaluation of 136 Cases. Genij Ortopedii, Vol. 27 (3), 2021.
18. Sabharwal S, Macleod R. Ilizarov hip reconstruction for the management of advanced osteonecrosis in an adolescent with leukemia. J Pediatr Orthop B. 2012;21:252–259.
19. El-Mowafi H. Outcome of pelvic support osteotomy with the Ilizarov method in the treatment of the unstable hip joint. Acta Orthop Belg. 2005 Dec;71(6):686-91.
20. Huang Y, Xie H, Yi J, Yang M, Kong X, Chai W. Is PSO suitable for high riding dysplasias? Int Orthop. 2024 Apr 15.
21. Shetty GM, Song HR, Lee SH, Kim TY. Bilateral valgus-extension osteotomy of hip using hybrid external fixator in spondyloepiphyseal dysplasia: early results of a salvage procedure. J Pediatr Orthop B. 2008 Jan;17(1):21-5.


How to Cite this Article:  Gupta P, Kumar D | Management of Hip Instability in Children| International Journal of Paediatric Orthopaedics | May-August 2024; 10(2): 18-23. https://doi.org/10.13107/ijpo.2024.v10.i02.186

(Article Text HTML)      (Full Text PDF)


Blount’s Disease: Review Article

Volume 10 | Issue 2 | May-August 2024 | Page: 24-33 | Yashwant Singh Tanwar, Sirazul Haque Malik, Karolina Siwicka, Nando Ferreira, Pieter Herman Maré 

DOI- https://doi.org/10.13107/ijpo.2024.v10.i02.188

Submitted: 02/05/2024; Reviewed: 29/05/2024; Accepted: 21/06/2024; Published: 10/08/2024


Authors: Sudhanshu Yashwant Singh Tanwar MS Ortho., DNB, MRCS [1], Sirazul Haque Malik MS Ortho. [2], Karolina Siwicka MD, PhD (T & O) [3], Nando Ferreira FC Orth (SA), MMed (Orth), PhD [3], Pieter Herman Maré FC Orth (SA), PhD [4]
[1] Department of Orthopedics, Indraprastha Apollo Hospital, New Delhi, India.
[2] Department of Orthopedics, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Jollygrant, Uttarakhand, India.
[3] Division of Orthopedics, Department of Surgical Sciences, Faculty of Medicine and Health Sciences, Tygerberg Hospital, Stellenbosch University, Cape Town, 7505, South Africa.
[4] Paediatric Orthopaedics Unit, Grey’s Hospital, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Pietermaritzburg, South Africa.

Address of Correspondence

Dr. Yashwant Singh Tanwar
Department of Orthopedics, Indraprastha Apollo Hospital, New Delhi, India.
E-mail: tanwar_yashwant@yahoo.co.in


Abstract

Blount’s disease, or non-physiological idiopathic tibia vara, is a growth disturbance affecting the medial proximal tibial physis, leading to a progressive three-dimensional deformity characterized by varus, procurvatum, and internal rotation. While its precise etiology remains unclear, the condition has been closely linked to obesity, mechanical stress, and potential genetic predisposition. Infantile Blount’s typically presents between one and three years of age, often bilaterally, whereas late-onset forms occur in juveniles (4–10 years) or adolescents (>10 years) and are more commonly unilateral. Early differentiation from physiological bowing is essential, as untreated disease results in progressive deformity and joint instability.
Radiographic evaluation is critical in confirming the diagnosis and planning treatment. Key parameters, including the meta-diaphyseal (Drennan) angle, medial metaphyseal beak angle, and mechanical tibiofemoral axis deviation, provide objective measures to distinguish Blount’s disease from other causes of genu varum. Medial tibial plateau depression, best assessed using an arthrogram, is a key determinant in surgical planning, particularly in advanced cases.
Management strategies depend on the stage and severity of the disease. In early stages, guided growth using tension-band plating may modulate physeal development and prevent progression. However, in advanced or recurrent cases, surgical correction is required. Metaphyseal osteotomy, with or without internal fixation, remains the mainstay of treatment. In cases with significant medial plateau depression, a medial hemiplateau elevation osteotomy is indicated to restore joint congruency and knee stability. Severe or late-presenting cases may necessitate double osteotomy techniques, combining joint line realignment with metaphyseal correction. Acute correction methods, including oblique and dome osteotomies, are effective but carry risks of neurovascular compromise. In cases of complex multiplanar deformity, gradual correction using circular external fixation offers precise correction while minimizing complications.
Despite surgical intervention, recurrence remains a concern, particularly in cases with persistent medial physeal slope abnormalities. Strategies such as prophylactic lateral tibial and fibular epiphysiodesis, as well as controlled overcorrection, have been proposed to minimize recurrence risk. Perioperative considerations, including prophylactic fasciotomy and careful fibular osteotomy placement, play a role in preventing complications such as compartment syndrome and peroneal nerve palsy.
Blount’s disease is a progressive condition requiring early diagnosis and timely intervention to prevent long-term morbidity. A structured approach, incorporating clinical assessment, radiographic analysis, and stage-specific management, is essential to optimize outcomes. While current surgical techniques provide reliable correction, ongoing research into the pathophysiology and treatment of Blount’s disease remains essential to improving long-term prognosis.
Keywords: Blount’s disease, Infantile tibia vara, Adolescent tibia vara


References

1. Erlacher P. Deforming processes of the epiphyseal region in children. Arch Orthop trauma Surg. 1922;March(20):81–96.
2. W.P. Blount. Tibia vara: osteochondris deformans tibiae. J Bone Jt Surg. 1937;19:1–29.
3. LANGENSKIOLD A. Tibia vara; (osteochondrosis deformans tibiae); a survey of 23 cases. Acta Chir Scand. 1952 Mar 26;103(1):1–22.
4. LANGENSKIOELD A, RISKA EB. TIBIA VARA (OSTEOCHONDROSIS DEFORMANS TIBIAE): A SURVEY OF SEVENTY-ONE CASES. J Bone Joint Surg Am. 1964 Oct;46:1405–20.
5. Stricker SJ, Edwards PM, Tidwell MA. Langenskiöld Classification of Tibia Vara: An Assessment of Interobserver Variability. J Pediatr Orthop. 1994 Mar;14(2):152–5.
6. Sabharwal S, Zhao C, McClemens E. Correlation of body mass index and radiographic deformities in children with Blount disease. J Bone Joint Surg Am. 2007 Jun;89(6):1275–83.
7. ARKIN AM, KATZ JF. The effects of pressure on epiphyseal growth; the mechanism of plasticity of growing bone. J Bone Joint Surg Am. 1956 Oct;38-A(5):1056–76.
8. Mehtar M, Ramguthy Y, Firth G. Profile of patients with Blount’s disease at an academic hospital. SA Orthop J. 2091;18(9).
9. Muthuri SK, Francis CE, Wachira L-JM, Leblanc AG, Sampson M, Onywera VO, et al. Evidence of an overweight/obesity transition among school-aged children and youth in Sub-Saharan Africa: a systematic review. PLoS One. 2014;9(3):e92846.
10. Montgomery CO, Young KL, Austen M, Jo C-H, Blasier RD, Ilyas M. Increased risk of Blount disease in obese children and adolescents with vitamin D deficiency. J Pediatr Orthop. 2010 Dec;30(8):879–82.
11. Lisenda L, Simmons D, Firth GB, Ramguthy Y, Kebashni T, Robertson AJF. Vitamin D Status in Blount Disease. J Pediatr Orthop. 2016;36(5):e59-62.
12. Jansen N, Hollman F, Bovendeert F, Moh P, Stegmann A, Staal HM. Blount disease and familial inheritance in Ghana, area cross-sectional study. BMJ Paediatr Open. 2021 Apr;5(1):e001052.
13. Feldman MD, Schoenecker PL. Use of the metaphyseal-diaphyseal angle in the evaluation of bowed legs. J Bone Jt Surg. 1993 Nov;75(11):1602–9.
14. Siffert RS, Katz JF. The intra-articular deformity in osteochondrosis deformans tibiae. J Bone Joint Surg Am. 1970 Jun;52(4):800–4.
15. Maré PH, Thompson DM, Marais LC. Predictive Factors for Recurrence in Infantile Blount Disease Treated With Tibial Osteotomy. J Pediatr Orthop. 2021 Jan;41(1):e36–43.
16. Sanghrajka AP, Hill RA, Murnaghan CF, Simpson AHRW, Bellemore MC. Slipped upper tibial epiphysis in infantile tibia vara. J Bone Joint Surg Br. 2012 Sep;94-B(9):1288–91.
17. Staheli LT, Corbett M, Wyss C, King H. Lower-extremity rotational problems in children. Normal values to guide management. J Bone Joint Surg Am. 1985 Jan;67(1):39–47.
18. Wongcharoenwatana J, Kaewpornsawan K, Chotigavanichaya C, Eamsobhana P, Laoharojanaphand T, Musikachart P, et al. Medial Metaphyseal Beak Angle as a Predictor for Langenskiöld Stage II of Blount’s Disease. Orthop Surg. 2020 Dec;12(6):1703–9.
19. Davids JR, Blackhurst DW, Allen BL. Radiographic evaluation of bowed legs in children. J Pediatr Orthop. 2001;21(2):257–63.
20. Gordon JE, King DJ, Luhmann SJ, Dobbs MB, Schoenecker PL. Femoral Deformity in Tibia Vara. J Bone Jt Surg. 2006 Feb;88(2):380–6.
21. Sabharwal S, Lee J, Zhao C. Multiplanar Deformity Analysis of Untreated Blount Disease. J Pediatr Orthop. 2007 Apr;27(3):260–5.
22. Sabharwal S. Blount Disease. Orthop Clin North Am. 2015 Jan;46(1):37–47.
23. Robbins CA. Deformity Reconstruction Surgery for Blount’s Disease. Child (Basel, Switzerland). 2021 Jun 30;8(7).
24. Edwards TA, Hughes R, Monsell F. The challenges of a comprehensive surgical approach to Blount’s disease. J Child Orthop. 2017 Dec 1;11(6):479–87.
25. Jain MJ, Inneh IA, Zhu H, Phillips WA. Tension Band Plate (TBP)-guided Hemiepiphysiodesis in Blount Disease: 10-Year Single-center Experience With a Systematic Review of Literature. J Pediatr Orthop. 2020 Feb;40(2):e138–43.
26. Maré PH, Thompson DM, Marais LC. Guided growth using a tension-band plate in Blount’s disease. J Pediatr Orthop B. 2022 Mar 1;31(2):120–6.
27. Stevens PM. Guided growth for deformity correction. Oper Tech Orthop. 2011;21:197–202.
28. LaMont LE, McIntosh AL, Jo CH, Birch JG, Johnston CE. Recurrence After Surgical Intervention for Infantile Tibia Vara: Assessment of a New Modified Classification. J Pediatr Orthop. 2019 Feb;39(2):65–70.
29. Adulkasem N, Wongcharoenwatana J, Ariyawatkul T, Chotigavanichaya C, Eamsobhana P. A Predictive Score for Infantile Blount Disease Recurrence After Tibial Osteotomy. J Pediatr Orthop. 2023 Apr;43(4):e299–304.
30. Andrade N, Johnston CE. Medial epiphysiolysis in severe infantile tibia vara. J Pediatr Orthop. 2006;26(5):652–8.
31. Eamsobhana P, Kaewpornsawan K, Yusuwan K. Do we need to do overcorrection in Blount’s disease? Int Orthop. 2014 Aug;38(8):1661–4.
32. Maré PH, Thompson DM, Marais LC. Growth modulation may decrease recurrence when used as an adjunct to osteotomy in infantile Blount’s disease. SA Orthop J [Internet]. 2021 [cited 2024 Aug 31];20(2):88–92. Available from: http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1681-150X2021000200007&lng=en&nrm=iso&tlng=en
33. Baraka MM, Hefny HM, Mahran MA, Fayyad TA, Abdelazim H, Nabil A. Single-stage medial plateau elevation and metaphyseal osteotomies in advanced-stage Blount’s disease: a new technique. J Child Orthop. 2021 Feb 1;15(1):12–23.
34. Feldman DS, Madan SS, Ruchelsman DE, Sala DA, Lehman WB. Accuracy of Correction of Tibia Vara. J Pediatr Orthop. 2006 Nov;26(6):794–8.
35. Nada AA, Hammad ME, Eltanahy AF, Gazar AA, Khalifa AM, El-Sayed MH. Acute Correction and Plate Fixation for the Management of Severe Infantile Blount’s Disease: Short-term Results. Strateg trauma limb Reconstr. 2021;16(2):78–85.
36. Griswold B, Gilbert S, Khoury J. Opening Wedge Osteotomy for the Correction of Adolescent Tibia Vara. Iowa Orthop J. 2018;38:141–6.
37. Mare PH, Marais LC. Gradual Deformity Correction with a Computer-assisted Hexapod External Fixator in Blount’s Disease. Strateg Trauma Limb Reconstr. 2022 May 24;17(1):32–7.
38. Maré P, Thompson D. Infantile Blount’s disease. SA Orthop J. 2020;19(3).
39. Craig JG, van Holsbeeck M, Zaltz I. The utility of MR in assessing Blount disease. Skeletal Radiol. 2002 Apr;31(4):208–13.
40. Maré PH, Thompson DM, Marais LC. The Medial Elevation Osteotomy for Late-presenting and Recurrent Infantile Blount Disease. J Pediatr Orthop. 2021 Feb;41(2):67–76.
41. van Huyssteen AL, Hastings CJ, Olesak M, Hoffman EB. Double-elevating osteotomy for late-presenting infantile Blount’s disease. J Bone Joint Surg Br. 2005 May;87-B(5):710–5.
42. Rab GT. Oblique tibial osteotomy for Blount’s disease (tibia vara). J Pediatr Orthop [Internet]. 1988/11/01. 1988;8(6):715–20. Available from: https://www.ncbi.nlm.nih.gov/pubmed/3192702
43. Rab GT. Oblique tibial osteotomy revisited. J Child Orthop [Internet]. 2010/03/18. 2010;4(2):169–72. Available from: https://www.ncbi.nlm.nih.gov/pubmed/20234769
44. Dilawaiz Nadeem R, Quick TJ, Eastwood DM. Focal dome osteotomy for the correction of tibial deformity in children. J Pediatr Orthop B. 2005 Sep;14(5):340–6.
45. Miraj F, Ajiantoro, Arya Mahendra Karda IW. Step cut “V” osteotomy for acute correction in Blount’s disease treatment: A case series. Int J Surg Case Rep. 2019;58:57–62.
46. Phedy P, Siregar PU. Osteotomy for deformities in blount disease: A systematic review. J Orthop. 2016 Sep;13(3):207–9.
47. Karuppal R, Mohan R, Marthya A, Ts G, S S. Case Report: “Z” osteotomy – a novel technique of treatment in Blount’s disease. F1000Research. 2015;4:1250.
48. Khermosh O, Wientroub S. Serrated (W/M) osteotomy: a new technique for simultaneous correction of angular and torsional deformity of the lower limb in children. J Pediatr Orthop B. 1995;4(2):204–8.
49. Gkiokas A, Brilakis E. Management of neglected Blount disease using double corrective tibia osteotomy and medial plateau elevation. J Child Orthop. 2012 Oct;6(5):411–8.
50. Gbenou AS, Assan BR, Houegban ASCR, Fiogbe MA. Compartment syndrome following an acute correction of a neglected case of Blount’s disease: What lessons can be learned? J Orthop Reports. 2022 Dec;1(4):100079.
51. Cometa MA, Esch AT, Boezaart AP. Did continuous femoral and sciatic nerve block obscure the diagnosis or delay the treatment of acute lower leg compartment syndrome? A case report. Pain Med. 2011 May;12(5):823–8.
52. Greene WB. Infantile tibia vara. J Bone Jt Surg. 1993 Jan;75(1):130–43.
53. Birch JG. Blount Disease. J Am Acad Orthop Surg. 2013 Jul 1;21(7):408–18.
54. McCarthy JJ, MacIntyre NR, Hooks B, Davidson RS. Double Osteotomy for the Treatment of Severe Blount Disease. J Pediatr Orthop. 2009 Mar;29(2):115–9.
55. Hefny H, Shalaby H, El-kawy S, Thakeb M, Elmoatasem E. A New Double Elevating Osteotomy in Management of Severe Neglected Infantile Tibia Vara using the Ilizarov Technique. J Pediatr Orthop. 2006 Mar;26(2):233–7.
56. Bar-On E, Weigl DM, Becker T, Katz K. Treatment of severe early onset Blount’s disease by an intra-articular and a metaphyseal osteotomy using the Taylor Spatial Frame. J Child Orthop. 2008 Dec 1;2(6):457–61.
57. Cerqueira F dos S, Motta GATA, Rocha de Faria JL, Pizzolatti IS, Motta DP da, Mandarino M, et al. Controlled Double Gradual Opening Osteotomy for the Treatment of Severe Varus of the Knee—Blount’s Disease. Arthrosc Tech. 2021 Sep;10(9):e2199–206.
58. Jones S, Hosalkar HS, Hill RA, Hartley J. Relapsed infantile Blount’s disease treated by hemiplateau elevation using the Ilizarov frame. J Bone Joint Surg Br. 2003 May;85-B(4):565–71.
59. Tavares JO, Molinero K. Elevation of medial tibial condyle for severe tibia vara. J Pediatr Orthop B. 2006 Sep;15(5):362–9.
60. Haddad FS, Harper GD, Hill RA. Intraoperative Arthrography and the Ilizarov Technique. J Bone Jt Surg. 1997 Sep 1;79(5):731–3.
61. Stanitski DF, Stanitski CL, Trumble S. Depression of the Medial Tibial Plateau in Early-Onset Blount Disease: Myth or Reality? J Pediatr Orthop. 1999 Mar;19(2):265–9.


How to Cite this Article:  Tanwar YS, Malik SH, Siwicka K, Ferreira N, Maré PH | Blount’s Disease: Review Article | International Journal of Paediatric Orthopaedics | May-August 2024; 10(2): 24-33. https://doi.org/10.13107/ijpo.2024.v10.i02.188

(Article Text HTML)      (Full Text PDF)